
Ein	neuer	Pfad	zu	den	wesentlichen	Ergebnissen	der	SRT	
	
	
Auf	einem	neuen	und	sehr	schnellen	Pfad	werden	auf	den	ersten	6	Seiten	die	wesentlichen	Ergebnisse	der	SRT	exakt	
hergeleitet.	Die	Darstellung	kommt	ohne	Lorentz-Transformationen,	ohne	experimentelle	Bestätigungen,	ohne	
Anwendungsbeispiele,	ohne	Raumzeit-Diagramme	und	ohne	Aufgaben	daher,	dafür	präsentiert	sie	noch	die	'halbe	
Geschwindigkeit'.	Für	Illustrationen	und	Beispiele	(also	das	Fleisch	am	Knochen)	wird	oft	auf	die	Webseite	
"www.relativity.li"	verwiesen,	wo	mein	Buch	"Epstein	erklärt	Einstein"	(kurz	EEE)	vollständig	publiziert	ist.	
	
Im	Abschnitt	20,	sozusagen	post	festum,	werden	dann	doch	noch	die	Lorentz-Transformationen	hergeleitet,	damit	die	
selten	verwendeten	allgemeinen	Formeln	der	Addition	von	Geschwindigkeiten,	der	Aberration	und	des	Dopplereffekts	
bestimmt	werden	können.	Den	Abschluss	bildet	ein	Abschnitt	zur	Frage,	was	von	Newtons	Gesetzen	übrigbleibt,	sowie	
ein	kurzer	Abschnitt	zu	axiomatischen	Fragen.	
	
Was	hier	noch	fehlt	ist	wie	so	oft	der	wichtige	Teil	zu	den	Transformationen	der	elektrischen	und	magnetischen	Felder.	
Diese	Lücke	ist	jetzt	aber	mit	der	folgenden	Publikation	geschlossen:	
https://www.physastromath.ch/uploads/myPdfs/Relativ/SRT	mit	Vierervektoren.pdf	
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1.		Zeitdilatation	und	Dopplereffekt	
	
	
In	der	Akustik	muss	man	für	die	Berechnung	der	Frequenzänderung	zwei	Fälle	unterscheiden:	
	
a)		 der	Sender	ruht	im	Medium,	der	Empfänger	entfernt	sich	mit	der	Geschwindigkeit		𝑣		von	der	Quelle.	Die		
	 entsprechende	Formel	ist	dann	

																																𝑓& 	= 	 𝑓( ·
𝑐 − 𝑣
𝑐

	

	
b)	 der	Empfänger	ruht	im	Medium,	der	Sender	entfernt	sich	mit	der	Geschwindigkeit		𝑣		vom	Empfänger.	Die	
	 Frequenzänderung	folgt	dann	der	Formel	
		

																														𝑓& 	= 	 𝑓( ·
𝑐

𝑐 + 𝑣
	

	
	
Wir	setzen	nun	für	das	Licht	zusätzlich	voraus,	dass	die	Ausbreitungsgeschwindigkeit		𝑐		des	Signals	in	allen	
Inertialsystemen	dieselbe	sei	und	dass	diese	unabhängig	sei	vom	Bewegungszustand	des	Senders,	ganz	so	wie	es		
die	Wellengleichung	von	Maxwell	fordert.	Für	Licht	soll	es	also,	im	Unterschied	zum	Schall,	kein	ausgezeichnetes	
Bezugssystem	geben,	in	welchem	das	Trägermedium	des	Signals	ruht.		
	
Wenn	es	kein	ausgezeichnetes	Bezugssystem	mehr	gibt	und	nur	noch	eine	Relativgeschwindigkeit	gemessen	werden	
kann,	müssen	die	beiden	Fälle	aber	dasselbe	Ergebnis	liefern!	Es	muss	also	irgendetwas	mit	den	Frequenzen	geschehen	
wenn	Sender	und	Empfänger	bewegt	sind	gegeneinander.	Wenn	sich	Frequenzen	ändern	sollen	muss	aber	zwingend	
etwas	mit	der	Zeit	geschehen,	das	ist	die	einzige	Grösse,	welche	bei	konstanter	Signalgeschwindigkeit	die	Anzahl	der	
gezählten	Schwingungen	beeinflussen	kann!	Wir	nehmen	also	an,	dass	es	einen	von	der	Relativgeschwindigkeit		𝑣		
abhängigen	Faktor		𝑟(𝑣)		gibt	sodass	gilt	
	

∆𝑡1 	= 	∆𝑡2 · 𝑟(𝑣)	
	
∆𝑡1		ist	dabei	ein	Zeitintervall	(der	zeitliche	Abstand	zweier	Ereignisse)	im	'schnellen'	System,	∆𝑡2	das	entsprechende	
Zeitintervall	im	Ruhesystem	gemessen.		𝑟(𝑣)	kann	nicht		1		sein	für		𝑣	 ≠ 	0	,	da	sich	die	beiden	Formeln	weiter	oben	
unterscheiden.	Die	Zeit	kann	also	nicht	mehr	gleich	schnell	laufen	in	zwei	zueinander	bewegten	Bezugssystemen,	wir	
müssen	uns	von	Newtons	Absoluter	Zeit	verabschieden!	
	
Über	die	Funktion	𝑟(𝑣)	machen	wir	keine	weiteren	Voraussetzungen.	Nur	zugunsten	der	einfacheren	Sprechweise	
nehmen	wir	mal	an,	dass	𝑟(𝑣)	kleiner	sei	als	1	für		𝑣 ≠ 0		(man	kann	den	ganzen	Text	auch	für	den	anderen	Fall	
formulieren	und	kommt	zu	demselben	Ergebnis).	
	
Im	Fall	a)	bewegt	sich	der	Empfänger,	dann	tickt	also	seine	Uhr	um	den	Faktor		𝑟(𝑣)	langsamer.	Er	wird	entsprechend	
eine	grössere	Frequenz	messen,	in	seinen	langen	Sekunden	treffen	mehr	Schwingungen	ein.	(1.1)	muss	somit	korrigiert	
werden	zu	

𝑓& 	= 	 𝑓( ·
𝑐 − 𝑣
𝑐

·
1

𝑟(𝑣)
	

	
Im	Fall	b)	ruht	der	Empfänger,	und	die	Uhr	des	schnellen	Senders	tickt	verlangsamt.	Dadurch	sinkt	aus	der	Sicht	des	
Empfängers	seine	Sendefrequenz,	und	wir	müssen	(1.2)	korrigieren	zu	
	

𝑓& 	= 	 𝑓( ·
𝑐

𝑐 + 𝑣
· 𝑟(𝑣)	

	
Wenn	sich	die	beiden	Fälle	nicht	mehr	unterscheiden	dürfen	ergibt	sich	daraus	die	Gleichung	
	

𝑐 − 𝑣
𝑐

·
1

𝑟(𝑣)
	= 	

𝑐
𝑐 + 𝑣

· 𝑟(𝑣)	

	

(1.1)	

(1.2)	



oder	

𝑟(𝑣)" 	= 	
𝑐	– 𝑣
𝑐

·
𝑐 + 𝑣
𝑐

	= 	
𝑐"	–	𝑣"

𝑐"
		= 	1	–	

𝑣"

𝑐"
			

	
und	damit	

																	𝒓(𝒗) = 		 𝟏 − 	
𝒗𝟐

𝒄𝟐
	

	
	
Das	liefert	den	bekannten	Faktor	für	die	Zeitdilatation.	Die	negative	Lösung	wäre	allenfalls	interessant	für	eine	Science-
Fiction-Geschichte	...		
	
Damit	finden	wir	nun	sofort	die	korrekte	Formel	für	den	longitudinalen	Dopplereffekt.	Setzen	wir	den	Wurzelausdruck	
für		𝑟(𝑣)		in	die	korrigierten	Dopplerformeln	ein	erhalten	wir	in	beiden	Fällen	dasselbe	Ergebnis:	
		

𝒇𝑬 	= 	 𝑓> ·
𝑐

𝑐	 + 	𝑣
· 𝑟(𝑣) = 	 𝑓> ·

𝑐
𝑐	 + 	𝑣

·
𝑐	– 𝑣 · 𝑐 + 𝑣

𝑐"
	 	= 	 𝒇𝑺 ·

(𝒄	– 	𝒗)
(𝒄 + 𝒗)

		

	

𝒇𝑬 	= 	 𝑓> ·
𝑐	 − 	𝑣
𝑐

·
1

𝑟(𝑣)
= 	 𝑓> ·

𝑐	 − 	𝑣
𝑐

·
𝑐"

𝑐	– 𝑣 · 𝑐 + 𝑣
	 	= 	 𝒇𝑺 ·

(𝒄	– 	𝒗)
(𝒄 + 𝒗)

		

	
Dabei	steht		𝑣		für	die	Geschwindigkeit,	mit	der	sich	die	beiden	voneinander	entfernen.	
	
	
Das	Relativitätsprinzip,	also	die	Forderung,	dass	es	kein	ausgezeichnetes	"Äthersystem"	geben	soll,	liefert	zusammen	
mit	der	zusätzlichen	Annahme,	dass	die	Ausbreitungsgeschwindigkeit	des	Signals	unabhängig	sein	soll	vom	Bewegungs-
zustand	des	Senders,	sofort	die	Formeln	für	die	Zeitdilatation	und	den	longitudinalen	Dopplereffekt.		
	
Graphen	zu	den	drei	Doppler-Formeln	und	eine	schöne	Anwendung	des	optischen	Dopplereffekts	findet	man	hier:	
https://www.relativity.li/de/epstein/lesen/d0_de/d6_de	
Beachten	Sie,	dass	dort	die	Relativgeschwindigkeit		𝑣		positiv	eingesetzt	wird	bei	Annäherung.	Die	Vorzeichen	sind	
daher	gerade	anders	herum	gesetzt.	
	
	
	
Die	Zeitdilatation	hat	einen	weiteren	unmittelbaren	Effekt.	Bewegt	sich	ein	Sender	senkrecht	zur	direkten	Sichtlinie	zum	
Empfänger	so	ändert	sich	die	Distanz	der	beiden	ja	nicht.	Trotzdem	gibt	es	einen	Doppler-Effekt,	da	der	Oszillator	im	
Sender	aus	der	Sicht	des	Empfängers	verlangsamt	schwingt.	Man	nennt	diesen	rein	relativistischen	Effekt	den	
transversalen	Dopplereffekt		im	Unterschied	zum	longitudinalen	Dopplereffekt,	den	wir	oben	behandelt	haben.	Für	die	
Frequenzverminderung	gilt	hier	
	

														𝒇𝑬 	= 	 𝒇𝑺 · 𝟏	–	
𝒗𝟐

𝒄𝟐
			

	
Der	Effekt	ist	viel	schwieriger	nachzuweisen	als	der	longitudinale	Dopplereffekt,	da	er	vom	Quadrat	von		𝑣/𝑐		abhängt	
und	nicht	von		𝑣/𝑐		selber.	
	
Formeln	für	den	allgemeinen	Fall	werden	im	Abschnitt	23	hergeleitet.	
	
	
	 	

(1.3)	

(1.4)	

(1.5)	

(1.6)	



2.		Die	Addition	von	parallelen	Geschwindigkeiten	
	
	
Aus	der	relativistischen	Dopplerformel	gewinnen	wir	jetzt	die	Formel	für	die	Addition	von	parallelen	Geschwindig-
keiten.	Ganz	ähnlich	findet	man	das	schon	bei	Hermann	Bondi	("Relativity	and	Common	Sense",	1962,	neu	aufgelegt	bei	
Dover	Publications	1980)	und	im	schönen	Buch	"It's	About	Time"	von	N.	David	Mermin	(Princeton	University	Press,	
2005).	
	
Es	bewege	sich	B	in	positiver	xA-Richtung	von	A	mit	der	Geschwindigkeit	𝑣	relativ	zu	A,	und	es	bewege	sich	C	in	positiver	
xB-Richtung	von	B	mit	der	Geschwindigkeit		𝑢	relativ	zu	B.	Die	beiden	x-Richtungen	sollen	wie	üblich	zusammenfallen.	
C	sende	nun	Strahlung	der	Frequenz		fC		in	Richtung	von	B	und	damit	auch	von	A.	Nach	dem	letzten	Abschnitt	empfängt	
B	diese	Strahlung	bei	einer	Frequenz	von	
	

𝑓B 	= 	
(𝑐	– 	𝑢
(𝑐 + 𝑢

	 · 𝑓C 	

	
Mit	dieser	Frequenz	rauscht	die	Strahlung	an	B	vorbei	und	weiter	zu	A,	der	entsprechend	die	Frequenz	misst		
	

𝑓D 	= 	
(𝑐	– 	𝑣
(𝑐 + 𝑣

	 · 𝑓B 	=
(𝑐	– 	𝑣
(𝑐 + 𝑣

	 ·
(𝑐	– 	𝑢
(𝑐 + 𝑢

	 · 𝑓C		

	
Für	die	gesuchte	Geschwindigkeit		𝑧		von	C	relativ	zu	A	gilt	andererseits	
	

𝑓D 	= 	
(𝑐	– 	𝑧
(𝑐 + 𝑧

	 · 𝑓C 	

	
Setzt	man	die	beiden	Terme	für		𝑓D		einander	gleich	so	erhält	man	nach	einigen	elementaren	Umformungen	
	

																						𝒛	 = 	
𝒗	 + 	𝒖

𝟏	 + 	𝒗 · 𝒖𝒄𝟐
	

	
Sind		𝑣		und		𝑢		klein	gegenüber	der	Lichtgeschwindigkeit		𝑐		,	so	unterscheidet	sich	das	Ergebnis	praktisch	nicht	von	der	
Geschwindigkeitsaddition	nach	Newton	und	Galilei.	
Setzt	man	für	eine	oder	auch	für	beide	der	Geschwindigkeiten		𝑢		und		𝑣		die	Lichtgeschwindigkeit		𝑐		ein,	so	liefert	die	
Formel	wieder	diese	Lichtgeschwindigkeit		𝑐	.	Die	Rechnung	zeigt	somit	auch,	dass	die	getroffenen	Annahmen	nicht	
schon	in	sich	widersprüchlich	sind.	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	 	

(2.1)	



3.		Die	'halbe	Geschwindigkeit'	und	die	'doppelte	Geschwindigkeit'	in	der	SRT	
	
	
Wir	fragen	uns	jetzt,	für	welche	Geschwindigkeit		𝑤		gilt	
	

𝑣	 = 	
𝑤	 + 	𝑤

1	 + 	𝑤 · 𝑤
𝑐"

	

	
Nach	(2.1)	wäre		𝑤		dann	die	'halbe	Geschwindigkeit'	von		𝑣		in	der	SRT,	und		𝑣		wäre	die	'doppelte	Geschwindigkeit'	von	
𝑤	.	Löst	man	die	Gleichung	nach		𝑤		auf	so	erhält	man	nach	elementaren	Umformungen	
	

																									𝒘	 = 	
𝒗

𝟏 + 𝟏	 − 	𝒗
𝟐

𝒄𝟐

	

	
Für	kleine	Geschwindigkeiten		𝑣		ist	der	Wurzelterm	praktisch	1	und	wir	erhalten	für		𝑤		praktisch		𝑣	/	2	,	also	das	
klassische	Ergebnis.	Da	der	Wurzelterm	immer	kleiner	ist	als	1	ist		w		also	immer	ein	bisschen	grösser	als		𝑣	/	2	.	Erreicht		
𝑣		fast	die	Lichtgeschwindigkeit	so	ist		𝑤		fast	gleich	gross	wie		𝑣		!	
	
Jerzy	Kocik	hat	im	American	Journal	of	Physics	(Vol.	80,	Nr.	8,	p.	737f)	gezeigt,	wie	man	Geschwindigkeiten	in	der	SRT	
ganz	einfach	mit	Zirkel	und	Lineal	addieren	kann.	Sein	Artikel	hat	meinen	Freund	Alfred	Hepp	und	mich	zu	einer	
Ausarbeitung	angeregt,	in	welcher	die	'halbe	Geschwindigkeit'	eine	wichtige	Rolle	einnimmt.	Sie	können	diese	Arbeit	
hier	herunterladen:		https://www.physastromath.ch/uploads/myPdfs/Relativ/Relativ_06_de.pdf	
	
Zu	zwei	mit		𝑣		relativ	zueinander	bewegten	Bezugssystemen		S		und		S'		gibt	es	immer	ein	'mittleres'	Bezugssystem	T		in	
welchem	sich	die	Situation	vollkommen	symmetrisch	darstellt.		S		bewegt	sich	für		T		mit		–	𝑤		in	die	eine	Richtung,	und		
S'		bewegt	sich	für		T		mit		𝑤		in	die	Gegenrichtung.	Dabei	ist		𝑤		die	'halbe	Geschwindigkeit'	von		𝑣	.	
	
	
Die	Kenntnis	dieser	'halben	Geschwindigkeit'	ist	oft	nützlich.	Wir	werden	sie	im	nächsten	Abschnitt	einsetzen	um	den	
relativistischen	Ausdruck	für	den	Impuls	herzuleiten.	Ohne	diese	halbe	Geschwindigkeit	wären	die	erforderlichen	
algebraischen	Umformungen	mühsamer.	Und	im	Abschnitt	8	zeigen	wir	noch,	dass	man	die	kinetische	Energie	erhält	
wenn	man	den	Impuls	mit	der	'halben	Geschwindigkeit'	multipliziert.	
	
Mir	sind	keine	Autoren	bekannt	welche	mit	dieser	'halben	Geschwindigkeit'	gearbeitet	haben.	
	
	
	 	

(3.1)	



4.		Der	vollkommen	inelastische	Stoss	
	
	
In	einem	System	S	sollen	sich	zwei	identische	Körper	vollkommen	symmetrisch	aufeinander	zu	bewegen.	Wir	lassen	die	
Möglichkeit	zu	(aber	wir	verlangen	es	nicht	!),	dass	ihre	Massen	von	der	Geschwindigkeit	abhängen,	und	schreiben	für	
die	beiden	Impulse	daher	

𝑚K ∙ 𝑤										respektive										𝑚K ∙ (−𝑤)	
	
Der	gesamte	Impuls	ist	null,	daher	haben	wir	nach	einem	vollkommen	inelastischen	Stoss	eine	einzige	Masse		M0	,	die	
im	System	S	ruht.	
Nun	betrachten	wir	diese	Kollision	aus	einem	System	S'	,	welches	sich	mit		–	𝑤		relativ	zu	S	bewegt.	In	diesem	System	ist	
der	zweite	Körper	in	Ruhe,	während	sich	der	erste	mit	der	'doppelten	Geschwindigkeit'		𝑣		bewegt.	Nach	der	Kollision	
bewegt	sich	der	entstandene	Körper	im	System	von	S'	mit	der	Geschwindigkeit		𝑤	.	Wir	schreiben	nun	die	Gleichungen	
für	die	Impulserhaltung	und	die	Massenerhaltung	im	System	S'	auf.	Das	sind	ja,	nebst	dem	Erhaltungssatz	für	die	
elektrische	Ladung,	die	grundlegenden	Glaubenssätze	der	ganzen	Physik:	
	

	I																		𝑚1 ∙ 𝑣		 = 		𝑀K 	 ∙ 	𝑤	
	

	II																		𝑚1 	+ 	𝑚2 		= 		𝑀K			
	
Wir	eliminieren	in	der	ersten	Gleichung	mithilfe	der	zweiten		Mw		und	setzen	für	die	'halbe	Geschwindigkeit'		𝑤		das	
Ergebnis	des	letzten	Abschnittes	ein:		
	

𝑚1 ∙ 𝑣		 = 		 (		𝑚1 	+ 	𝑚2	) 	 ∙ 	𝑤		 = 		 (		𝑚1 	+ 	𝑚2	) 	 ∙ 		
𝑣

1 + 1	–	𝑣
"

𝑐"

			

	
Nach	der	Division	durch		𝑣		erhält	man	schnell		
	

																						𝒎𝒗 	= 		
𝒎𝟎

𝟏	–	𝒗
𝟐

𝒄𝟐	
	

	
Das	ist	die	Definition	der	'dynamischen	Masse'		𝑚1	.	Der	relativistische	Impuls	ist	entsprechend	definiert	durch	
	
	

																								𝒑	 = 	𝒎𝒗 ∙ 𝒗		 = 			
𝒎𝟎 ∙ 𝒗

𝟏	–	𝒗
𝟐

𝒄𝟐	
	

	
	
Nur	mit	diesen	Definitionen	lassen	sich	die	Gleichungen	I	und	II	erfüllen!	Der	Erhaltungssatz	für	die	Massen	gilt	also	nur	
für	die	'dynamischen	Massen',	und	auch	die	Definition	des	Impulses	erfährt	eine	Korrektur.	
	
Aus		𝑤 = 𝑣/2		würde	aus	den	beiden	Gleichungen		𝑚1 = 𝑚2		und		𝑀K = 𝑀2 	= 	2 · 𝑚2		folgen.	Die	'kleine'	Korrektur	
der	Additionsformel	für	Geschwindigkeiten	hat	also	sofort	tiefgreifende	Konsequenzen.		
	
Diese	Herleitung	hat	Max	Born	in	seinem	Buch	"Die	Relativitätstheorie	Einsteins"	(erste	Auflage	1920)	vorgestellt,	
allerdings	in	viel	komplizierterer	Form	(p.	233ff).	Mit	unserer	'halben	Geschwindigkeit'	verschwindet	der	ganze	
algebraische	Aufwand.	
Born	präsentiert	in	jenem	Buch	auch	schon	eine	Herleitung	der	relativistischen	Impulsformel,	welche	auf	die	
Erhaltungssätze	für	die	Masse	und	den	Impuls	verzichten	kann	(unser	Abschnitt	18).		
	 	

(4.1)	

(4.2)	



5.		Gesamtenergie,	Kinetische	Energie	und	Ruheenergie	
	
	
Wir	bestimmen	nun	wie	üblich	den	relativistischen	Ausdruck	für	die	kinetische	Energie,	d.h.	wir	berechnen	den	Aufwand	
um	einen	Körper	aus	dem	Ruhezustand	auf	eine	bestimmte	Geschwindigkeit		vend		zu	beschleunigen.	Aus	
			

𝑑𝐸	 = 	𝐹 ∙ 	𝑑𝑠														und													𝐹	 = 	
𝑑𝑝
𝑑𝑡
										(		Newtons	′lex	secunda′	)		

	
erhält	man	
	

𝑑𝐸	 = 	
𝑑𝑝
𝑑𝑡
	 ∙ 	𝑑𝑠		 = 		

𝑑𝑝
𝑑𝑣
	 ∙
𝑑𝑣
𝑑𝑡
	 ∙ 𝑑𝑠	 = 	

𝑑𝑝
𝑑𝑣
	 ∙
𝑑𝑠
𝑑𝑡
	 ∙ 𝑑𝑣	 = 		

𝑑𝑝
𝑑𝑣
	 ∙ 𝑣 · 𝑑𝑣	

	
	
und	somit	

𝐸klm 	= 	 		
𝑑𝑝
𝑑𝑣
	 ∙ 𝑣 · 𝑑𝑣

1nop

2
	

	
Die	Formel	(4.2)	im	letzten	Abschnitt	liefert	

																											
𝒅𝒑
𝒅𝒗

		= 	𝒎𝟎 ∙ 	 𝟏	–	
𝒗𝟐

𝒄𝟐

r𝟑𝟐
	

	
und	das	Integral	ergibt	dann	zusammen	mit	(4.1)	
	

																					𝑬𝒌𝒊𝒏 	= 	𝒎𝟎 ∙ 𝒄𝟐 ∙
𝟏

𝟏	–	𝒗𝒆𝒏𝒅
𝟐

𝒄𝟐 	
		– 	𝟏 	= 	𝒎𝒗𝒆𝒏𝒅 ∙ 𝒄

𝟐		– 		𝒎𝟎 ∙ 𝒄𝟐 	= 		 ∆𝒎 ∙ 𝒄𝟐	

	
Zu	einer	verrichteten	Arbeit	oder	einer	Energiezufuhr	gehört	also	eine	Massenzunahme	nach	der	Formel	
	

															∆𝑾	 = 	∆𝑬	 = 	∆𝒎 ∙ 𝒄𝟐	
	
Energie	und	Masse	sind	ineinander	umwandelbar.	Der	Ruhemasse		m0		entspricht	schon	eine	Ruheenergie		E0		vom	
Betrag			𝑚2 · 𝑐"

			,	und	es	gilt	
	

																												𝑬𝒕𝒐𝒕 	= 	𝑬𝟎 	+ 	𝑬𝒌𝒊𝒏 	= 	𝒎𝒗 ∙ 𝒄𝟐 	= 	
𝒎𝟎

𝟏	–	𝒗
𝟐

𝒄𝟐	
	 ∙ 𝒄𝟐			

	
	
Der	Energieerhaltungssatz	und	der	Massenerhaltungssatz	verschmelzen	zu	einem	einzigen	Erhaltungssatz,	der	
wahlweise	als	Energieerhaltungssatz	(unter	Einschluss	der	Ruheenergien)	oder	als	Massenerhaltungssatz	(für	die	
'dynamischen	Massen')	formuliert	werden	kann.	
	
Beispiele	für	Prozesse,	bei	denen	Masse	in	Energie	umgewandelt	wird	oder	auch	umgekehrt	gibt	es	viele.		
Zugehörige	Abschnitte	in	EEE	:	
https://www.relativity.li/de/epstein/lesen/f0_de/f3_de	
https://www.relativity.li/de/epstein/lesen/f0_de/f4_de	
https://www.relativity.li/de/epstein/lesen/f0_de/f5_de	
	
	
	 	

(5.2)	

(5.3)	

	(5.4)	

	(5.1)	



6.		Gesamtenergie,	Impuls	und	der	Satz	des	Pythagoras	
	
	
Berechnet	man	die	Differenz	der	quadrierten	Gesamtenergie	und	der	quadrierten	Ruheenergie,	so	erhält	man	ein	
erstaunliches	Resultat:	
	

𝐸{|{" 	− 	𝐸2" 	= 	
𝑚2

" ∙ 𝑐}

1 − 𝑣
"

𝑐"
	− 	𝑚2

" ∙ 𝑐} 	= 	𝑚2
" ∙ 𝑐} ∙ 	

1

1 − 𝑣
"

𝑐"
	− 	1 	=	

	

= 	𝑚2
" ∙ 𝑐} ∙ 	

1	 − 	 1 − 𝑣
"

𝑐"

1 − 𝑣
"

𝑐"
	 	= 	𝑚2

" ∙ 𝑐} ∙ 	
	𝑣
"

𝑐"

1 − 𝑣
"

𝑐"
	 	= 			

𝑚2
" ∙ 𝑣"

1 − 𝑣
"

𝑐"
	 	∙ 𝑐" 	= 	 𝑝"	∙ 𝑐"	

	
Es	gilt	also	
	

															𝑬𝟎𝟐 	+ 	𝒑𝟐	∙ 𝒄𝟐 	= 	𝑬𝒕𝒐𝒕𝟐	
	
	
Die	Ruheenergie,	der	mit	der	Lichtgeschwindigkeit	multiplizierte	Impuls	und	die	Gesamtenergie	bilden	also	die	Seiten	
eines	rechtwinkligen	Dreiecks.	Energie	und	Impuls	sind	ähnlich	verknüpft	wie	Zeit	und	Raum	(in	der	Darstellung	mit	
Epstein-Diagrammen	ist	das	selbstverständlich,	siehe		https://www.relativity.li/de/epstein/lesen/e0_de/e5_de	).	
	
	

	
	
	
Für	den	Winkel	𝜑		in	diesem	Dreieck	gilt	
	

													𝑠𝑖𝑛(𝜑) 	= 	
𝑝 ∙ 𝑐
𝐸{|{

	= 	
𝑚1 ∙ 𝑣 ∙ 𝑐
𝑚1 ∙ 𝑐"

	= 	
𝑣
𝑐
	≡ 	𝛽1	

	
und	

	𝑐𝑜𝑠(𝜑) 	= 	
𝐸2
𝐸{|{

	= 1	–	
𝑣"

𝑐"
		≡ 	

1
𝛾1
	

	
Damit	sind	auch	die	traditionellen	Variablen		𝛽		und		𝛾		definiert.	 	

(6.1)	

(6.2)	

(6.3)	



7.		Gesamtenergie,	Impuls	und	die	ganze	Geschwindigkeit	
	
	
Eine	weitere	nützliche	Beziehung	finden	wir,	wenn	wir	die	Formel	(5.4)	für	die	Gesamtenergie	durch	die	Formel	(4.2)	für	
den	Impuls	dividieren	oder	einfach	feststellen,	dass	gilt	
	

𝐸{|{
𝑐"

	= 	𝑚1 		= 	
𝑝
𝑣
		

	
Es	gilt	offenbar	

																								𝒑 · 𝒄𝟐 	= 	𝑬𝒕𝒐𝒕 · 𝒗					
	

	
Auch	anhand	der	Figur	im	Abschnitt	6	lässt	sich	herauslesen	dass	gilt	
	

		
𝑝 · 𝑐
𝐸{|{

	= 	𝑠𝑖𝑛	𝜑	 = 	
𝑣
𝑐
	

	
Mit	(7.1)	lässt	sich	zum	Beispiel	die	Geschwindigkeit	des	Schwerpunktsystems	einiger	Teilchen	berechnen.	
	
	
	
	
	
8.		Kinetische	Energie,	Impuls	und	die	halbe	Geschwindigkeit	
	
	
Wir	gehen	von	der	Beziehung	(6.1)	zwischen	Gesamtenergie,	Ruheenergie	und	Impuls	aus	:	
	

𝑚1
" ∙ 𝑐} 	= 	𝑚2

" ∙ 𝑐} 	+ 	𝑚1
" ∙ 𝑣" ∙ 𝑐"	

	
Wir	dividieren	durch		𝑐"		und	stellen	ein	bisschen	um:	
	

𝑚1
" − 𝑚2

" ∙ 𝑐" 	= 	𝑚1
" ∙ 𝑣"	

	
Nach	der	Division	durch		(𝑚1 + 𝑚2)		erhalten	wir	links	nach	(5.4)	den	Ausdruck	für	die	kinetische	Energie:	
	

𝑚1 − 𝑚2 ∙ 𝑐" 	= 	
𝑚1

"

𝑚1 + 𝑚2
∙ 𝑣" 	= 	

𝑚1

1 + 𝑚2
𝑚1

∙ 𝑣" 	= 	
𝑚1

1 + 1 − 𝑣
"

𝑐"

∙ 𝑣" 	= 	𝑚1 ∙ 𝑣 ∙
𝑣

1 + 1 − 𝑣
"	

𝑐"

		= 	𝑚1 ∙ 𝑣 ∙ 𝑤		

	
wo		𝑤		für	die	'halbe	Geschwindigkeit'	von		𝑣		steht	(siehe	Abschnitt	3).	Wir	erhalten	damit	ein	Ergebnis,	welches	
gleichermassen	in	der	'klassischen'	Physik	gilt	wie	auch	in	der	SRT:	
	

															𝑬𝒌𝒊𝒏 	= 	𝒎𝒗 ∙ 𝒗 ∙ 𝒘 = 	𝒑 ∙ 	𝒘	
	
In	der	klassischen	Physik	haben	wir	ja	ebenfalls	
	

𝐸klm 	= 	
1
2
∙ 𝑚 ∙ 𝑣" 	= 	𝑚 ∙ 𝑣 ∙

𝑣
2
	= 	𝑝 ∙ 𝑤	

	
Es	ist	nicht	offensichtlich,	dass	sich	die	relativistische	Formel	für	die	kinetische	Energie	für	kleine	Geschwindigkeiten	
dem	klassischen	Ausdruck	annähert.	Sowohl	beim	Impuls	als	auch	bei	der	halben	Geschwindigkeit	ist	das	aber	klar,	
somit	muss	es	auch	für	deren	Produkt	gelten.	Mir	ist	kein	Buch	bekannt	in	welchem	(8.1)	vorgestellt	wird.		
	
	 	

(8.1)	

(7.1)	



9.		Impuls	und	Energie	von	Lichtteilchen	
	
	
Um	ein	Teilchen	mit	einer	nicht	verschwindenden	Ruhemasse	auf	Lichtgeschwindigkeit	zu	beschleunigen,	braucht	es	
nach	(5.2)	unendlich	viel	Energie.	Lichtteilchen	oder	Photonen	können	daher	keine	Ruhemasse	haben,	sie	sind	ja	
obligatorisch	mit	Lichtgeschwindigkeit	unterwegs.	Sie	haben	aber	Energie	und	Impuls,	und	für		𝑚2 = 0		erhalten	wir	aus	
der	Gleichung	(6.1)		
	

0	 + 𝑝"	∙ 𝑐" 	= 	𝐸{|{"	
oder	
	

																		𝑬	 = 	𝑬𝒕𝒐𝒕 	= 	𝑬𝒌𝒊𝒏 	= 	𝒑 ∙ 𝒄	
	
Diese	Formel	erhalten	wir	auch	wenn	wir	in	(7.1)	für	𝑣		die	Lichtgeschwindigkeit		𝑐		einsetzen	oder	wenn	wir	in	(8.1)	für	
die	'halbe	Geschwindigkeit'	von		𝑐		ebenfalls		𝑐		einsetzen.	
	
Nehmen	wir	Planck's	Formel			𝐸 = ℎ · 𝑓			hinzu	erhalten	wir	die	wichtigen	Beziehungen	
	

											𝑬	 = 	𝒉 ∙ 𝒇	 = 	𝒑 ∙ 𝒄	
und	
	

														𝒑	 = 	
𝑬
𝒄
	= 	

𝒉 ∙ 𝒇
𝒄

	= 	
𝒉
𝝀
			

	
Strahlung	einer	bestimmten	Frequenz		f		besteht	also	aus	Teilchen	der	Energie		ℎ · 𝑓	,	und	jedem	dieser	Teilchen	kommt	
der	Impuls		𝑝 = ℎ · 𝑓	/	𝑐		zu.	Auf	dieser	Grundlage	konnte	Einstein	1905	alle	Phänomene	des	äusseren	Photoeffekts	
erklären,	was	ihm	später	den	Nobelpreis	einbrachte.		
	
Dass	Licht	einen	Strahlungsdruck	ausübt	hat	Poynting	schon	1884	aus	den	Gleichungen	von	Maxwell	abgeleitet.	Eine	
schöne	Illustration	davon	ist	der	Schweif	von	Kometen:	Dieser	zeigt	immer	von	der	Sonne	weg,	weil	der	Druck	der	
Sonnenstrahlung	die	freigesetzten	Ionen	und	Staubteilchen	von	der	Sonne	weg	beschleunigt.	Wenn	sich	der	Komet	
wieder	von	der	Sonne	entfernt	fliegt	er	also	mit	dem	Schweif	voran	!	Auf	dem	folgenden	Bild	des	Kometen	Hale-Bopp		
sieht	man	schön	die	beiden	Schweife:	Den	Ionenschweif	und	den	Schweif	der	schwereren	Staubteilchen,	die	sich	
weniger	leicht	beschleunigen	lassen:	
	
	

	
	

http://astronomy.swin.edu.au/sao/imagegallery/Hale-Bopp.jpg  

(9.1)	

(9.2)	

(9.3)	



10.			𝐸 = 𝑚 · 𝑐"	aus	dem	Impulserhaltungssatz	und		𝐸 = 𝑝 · 𝑐	
	
	
Figur	a)	zeigt	einen	Körper	der	Ruhemasse	𝑚2		auf	den	sich	zwei	Energiequanten	symmetrisch	zubewegen.	Jeder	Quant	
transportiert	den	Impuls		𝑝		und	die	Energie		𝐸 = 𝑝 · 𝑐		.	Nach	der	Absorption	bleibt	der	Körper	aus	Symmetriegründen	
in	Ruhe,	seine	Energie	hat	um		∆𝐸 = 2 · 𝐸		zugenommen.	Seine	Masse	sei	nachher		𝑚�	:	
	

	
	

Figur	b)	zeigt	denselben	Vorgang	in	einem	Bezugsystem,	welches	sich	gegenüber	dem	Ruhesystem	des	Körpers	mit	der	
beliebig	kleinen	Geschwindigkeit		𝑢		nach	unten	bewegt.	Der	Körper	hat	vor	und	nach	der	Absorption	die	Geschwindig-
keit	𝑢	,	und	die	beiden	Quanten,	die	sich	auch	in	diesem	Bezugssystem	mit	𝑐	bewegen	müssen,	fallen	jetzt	unter	einem	
Winkel	𝛼	ein	für	welchen	gilt		𝑠𝑖𝑛(∝) 	= 	𝑢/𝑐	.	Die	Impulse	𝑝′	und	𝑞′	mögen	dabei	einen	leicht	anderen	Betrag	haben	
als	𝑝	.		
Die	Impulserhaltung	für	die	Komponenten	in	der	Richtung	von	𝑢	bedeutet	jetzt	
	

	𝛾� · 𝑚� · 𝑢		 = 	 𝛾� · 𝑚2 · 𝑢		 + 	2 · 𝑝′ · 𝑠𝑖𝑛(∝) 	= 	 𝛾� · 𝑚2 · 𝑢		 + 	2 · 𝑝′ ·
𝑢
𝑐
			

	
Nach	der	Division	durch	𝑢		(oder	durch		𝛾� · 𝑢	)	haben	wir			
	

	𝑚� 	= 	𝑚2 	+ 	2 ·
𝑝′
𝑐
·
1
𝛾�
		

	
Das	gilt	für	alle	(noch	so	kleinen)	Geschwindigkeiten	𝑢	.	Damit	gilt	die	Gleichung	auch	im	Grenzfall	für	𝑢 → 0	.	Der	Limes	
von		𝑝′		für		𝑢		gegen	null	ist	aber		𝑝		(und	derjenige	für	𝛾�	ist	1),	und	wir	erhalten	damit	auf	jeden	Fall	
	

𝑚� − 𝑚2 	= 	2 ·
𝑝
𝑐
		= 	2 · 	

𝐸
𝑐"
	= 		

∆𝐸
𝑐"

	

	
oder	

∆𝑚		 = 		
∆𝐸
𝑐"

	

	
	
Für	sehr	kleine	Geschwindigkeiten	kann	man	die	rot	gedruckten	Textteile	in	sehr	guter	Näherung	auch	weglassen.	
	
Diese	sehr	schöne	Herleitung	hat	Albert	Einstein	1946	gefunden.	Sie	ist	der	14.	Beitrag	in	der	Essaysammlung	"Aus	
meinen	späten	Jahren"	(	Ullstein	tb	34721,	19934	).	
	 	

(10.1)	



11.			𝐸 = 𝑚 · 𝑐"	aus	dem	Impulserhaltungssatz	und		𝐸 = 𝑝 · 𝑐	
	
	
Figur	a)	zeigt	zwei	Teilchen	derselben	Ruhemasse	𝑚2		die	sich	mit	den	Geschwindigkeiten		𝑣		und		−𝑣		aufeinander	zu	
bewegen.	Der	Gesamtimpuls	ist	null,	der	Schwerpunkt	O	dieses	Systems	befindet	sich	in	Ruhe.	Er	liegt	in	der	Mitte	
zwischen	den	beiden	Teilchen	:	
	

	
	

Figur	b)	zeigt	den	Zustand	des	Systems	zum	Zeitpunkt	∆𝑡	 = 	𝑙/𝑐	nachdem	das	linke	Teilchen	seinen	Impuls	in	der	Form	
eines	ultrakurzen	Lichtblitzes	abgegeben	hat.	Der	Lichtblitz	befindet	sich	bei	O,	das	linke	Teilchen	ruht	jetzt	im	Abstand	
𝑙		von	O	und	hat	die	Masse	𝑚�.	Das	rechte	Teilchen	befindet	sich	in	jenem	Moment	im	Abstand	
	

𝑙 − 𝑥	 = 	𝑙 − ∆𝑡 · 𝑣	 = 	𝑙 −
𝑙
𝑐
· 𝑣	 = 	𝑙 · 1 −

𝑣
𝑐

	

	
vom	Schwerpunkt	O	des	Gesamtsystems.	Die	Gleichung	für	den	Schwerpunkt	lautet	somit	
	

𝑙 · 𝑚� = 	𝛾 · 𝑚2 · 𝑙 − 𝑥 	= 		𝛾 · 𝑚2 · 𝑙 · 1 −
𝑣
𝑐

	

	
Die	dynamische	Masse	des	Blitzes	geht	nicht	in	die	Rechnung	ein,	weil	sie	sich	ja	gerade	am	Ort	O	befindet	!	
Wir	dividieren	durch		𝑙		und	benützen	die	Gleichung			𝐸 = 𝑝 · 𝑐 = 𝛾 · 𝑚2 · 𝑣 · 𝑐			und	erhalten	
	

𝑚� 	= 	𝛾 · 𝑚2 	− 	𝛾 · 𝑚2 ·
𝑣
𝑐
	= 	𝛾 · 𝑚2 	− 	

𝑝
𝑐
		= 		𝛾 · 𝑚2 	− 	

𝐸
𝑐"
		

	
Die	Abgabe	der	Energie		𝐸		führt	zu	einer	Verminderung	der	dynamischen	Masse	um	den	Betrag		 &

��
		!!																						(11.1)	

	
In	der	zeitlichen	Umkehr	bedeutet	das,	dass	die	Zufuhr	der	Energie	𝐸	zu	einer	entsprechenden	Zunahme	der	
dynamischen	Masse	führt!	Die	Figur	c)	zeigt	den	Zustand,	nachdem	der	rechte	Körper	den	Blitz	(und	damit	dessen	
Impuls	und	Energie)	absorbiert	hat.	Er	ruht,	und	nach	dem	eben	Gesagten	gilt	
	

𝑚" 	= 	𝛾 · 𝑚2 	+ 	
𝐸
𝑐"
		

	
Damit	erhalten	wir	
	

																		𝒎𝟐 − 𝒎𝟏 	= 	 𝛾 · 𝑚2 	+
𝐸
𝑐"

− 𝛾 · 𝑚2 	−
𝐸
𝑐"

	= 	2 ·
𝐸
𝑐"
	= 	

∆𝑬
𝒄𝟐
	

	
	 	

(11.2)	



	
Zu	Beginn	hatten	die	beiden	Körper	dieselbe	Ruhemasse	(und	dieselbe	dynamische	Masse).	Nach	der	Impuls-	und	
Energieübertragung	haben	die	Ruhemassen	der	beiden	Körper	(welche	in	unserer	Anordnung	mit	den	dynamischen	
Massen	identisch	sind)	eine	Differenz	von		∆𝐸/𝑐"	.	
	
Energie	und	dynamische	Masse	können	ineinander	umgerechnet	werden,	und	der	entsprechende	Faktor	ist	das	
Quadrat	der	Lichtgeschwindigkeit:	
	

∆𝑬	 = 	∆𝒎 · 𝒄𝟐	
	
	
Dividiert	man	den	Erhaltungssatz	für	die	Energie	durch	𝑐"		so	erhält	man	den	Erhaltungssatz	für	die	dynamischen	
Massen.	Ein	Erhaltungssatz	für	die	Ruhemassen	gilt	nicht,	es	ist	ja	
	

	𝑚� + 𝑚" 	= 	 𝛾 · 𝑚2 	− 	
𝐸
𝑐"

+ 𝛾 · 𝑚2 	+ 	
𝐸
𝑐"

	= 2 · 𝛾 · 𝑚2 		> 		2 · 𝑚2	

	
Die	kinetische	Energie	der	beiden	Teilchen	ist	bei	diesem	Prozess	in	zwei	Schritten	in	Ruheenergie	umgewandelt	
worden.	Die	Gesamtenergie	bleibt	dabei	natürlich	erhalten.	
	
	
Die	Idee,	die	Stabilität	des	Schwerpunkts	bei	einem	Austausch	von	Energie	innerhalb	eines	abgeschlossenen	Systems	
auszuwerten,	stammt	ursprünglich	auch	von	Einstein.	Er	hat	dabei	einen	Kasten	verwendet,	der	die	Teilchen	nach	dem	
Energie-	und	Impulsaustausch	wieder	zur	Ruhe	zwingt.	Das	erfordert	eine	zusätzliche	Diskussion,	da	es	in	der	SRT	ja	
keine	starren	Körper	geben	kann.		
Francesco	Cester	hat	den	Kasten	endlich	weggelassen	("Newton	und	die	Relativität",	Books	on	Demand	2017).	Er	
arbeitet	dann	mit	Näherungen	für	sehr	kleine	Geschwindigkeiten,	was	natürlich	berechtigt	ist,	wenn	man	an	den	
Austausch	einiger	Photonen	denkt.	Dabei	verschwindet	aber	auch	die	wichtige	Unterscheidung	von	Ruhemassen	und	
dynamischen	Massen.	
Unsere	Darstellung	ist	also	eine	Weiterentwicklung	von	Cesters	Ansatz.	Sie	zeigt	nebenbei,	dass	der	Erhaltungssatz	für	
die	dynamischen	Massen	aus	dem	Erhaltungssatz	für	den	Impuls	folgt.	 	

(11.3)	



	
12.			𝐸 = 𝑚 · 𝑐"	aus	dem	Impulserhaltungssatz	und		𝐸 = ℎ · 𝑓	
	
	
Ein	im	System	S		ruhender	Körper	der	Masse	𝑚2	soll	gleichzeitig	in	entgegengesetzte	Richtungen	je	einen	Energiequant	
vom	Betrag		ℎ · 𝑓		aussenden.	Nach	dieser	Emission	mag	er	die	Ruhemasse	𝑚�		haben.	Der	Körper	verharrt	dabei		in		S		
in	Ruhe,	da	sich	die	Impulse	der	beiden	Quanten	aufheben.		
	
Diesen	Vorgang	betrachten	wir	nun	aus	einem	Bezugssystem	S'	,	welches	sich	auf	der	Achse	der	beiden	Lichtquanten	
mit	der	Geschwindigkeit		𝑣		relativ	zu	diesem	Körper	bewegt.	Der	Körper	hat	in	S'		vor	und	nach	der	Emission	der	
Quanten	die	Geschwindigkeit	𝑣	.	Wir	schreiben	nun	mit	(9.3)	den	Impulserhaltungssatz	für	diesen	Emissionsprozess	im	
System	S'	auf.	Dabei	müssen	wir	die	Frequenzverschiebungen	nach	(1.4)	berücksichtigen:	
	

𝑚2 · 𝑣

1	–	𝑣
"	

𝑐"

		= 		
𝑚� · 𝑣

1	–	𝑣
"	

𝑐"

			+ 		
ℎ · 𝑓
𝑐

·
(𝑐 + 𝑣
(𝑐 − 𝑣

	 		− 		
ℎ · 𝑓
𝑐

·
(𝑐 − 𝑣
(𝑐 + 𝑣

		

	
Etwas	umgestellt:	

𝑚2 − 𝑚� · 𝑣	 = 		
ℎ · 𝑓
𝑐

	 · 1	 − 	
𝑣"	

𝑐"
	 ·

1 + 𝑣𝑐
1 − 𝑣𝑐

	 	− 	
1 − 𝑣𝑐
1 + 𝑣𝑐

	 	=	

	

= 		
ℎ · 𝑓
𝑐

	 · 1	 − 	
𝑣
𝑐
	 · 1	 + 	

𝑣
𝑐
·

1 + 𝑣𝑐

1 − 𝑣𝑐

		− 	
1 − 𝑣𝑐

1 + 𝑣𝑐

	=	

	
	

= 		
ℎ · 𝑓
𝑐

	 · 1 +
𝑣
𝑐
		− 1 −

𝑣
𝑐

	= 		
ℎ · 𝑓
𝑐

·
2𝑣
𝑐
	

	
Somit,	nach	Division	durch		𝑣	
	

															∆𝒎	 = 		𝟐 · 𝒉 · 𝒇	/	𝒄𝟐 	= 		 ∆𝑬	/	𝒄𝟐	
	
Die	Ruhemasse	des	Körpers	nimmt	durch	die	Abstrahlung	der	Energie		∆𝐸		um	den	Betrag		∆𝐸	/	𝑐"		ab.	
	
	
Zu	dieser	Rechnung	bin	ich	ebenfalls	durch	die	Lektüre	des	Buches	"Newton	und	die	Relativität"	von	Francesco	Cester	
(Books	on	Demand,	2017)	angeregt	worden.		
	
Cester	selber	verweist	auf	einen	Artikel	von	Fritz	Rohrlich	im	American	Journal	of	Physics	(Nr.	58	vom	April	1990).	
Rohrlich	rechnet	dort	näherungsweise	mit	der	akustischen	Dopplerformel	(1.1)	für	eine	bewegte	Lichtquelle.	Das	ist	
nicht	falsch,	die	Relativgeschwindigkeit	𝑣	darf	ja	beliebig	klein	sein.	Rohrlich	zieht	aber	wegen	der	Verwendung	von	
(1.1)	statt	(1.4)	noch	den	falschen	Schluss,	dass	die	abgestrahlte	Energiemenge	in	beiden	Bezugssystemen	denselben	
Betrag	habe.	Die	exakte	Rechnung	zeigt	hingegen	dass	gilt		∆𝐸′ = ∆𝐸 · 𝛾	.	
Genau	dieses	Resultat	braucht	Einstein	in	seiner	ersten	Herleitung	der	Formel		𝐸 = 𝑚 · 𝑐"	.	Wir	stellen	seine	
Argumentation	im	nächsten	Abschnitt	vor.		
	
	 	

(12.1)	



13.			𝐸 = 𝑚 · 𝑐"	aus	dem	Energieerhaltungssatz	und		𝐸 = ℎ · 𝑓	
	
	
Einstein	hat	im	Herbst	1905	quasi	als	Ergänzung	zur	Arbeit	über	die	Relativitätstheorie	einen	Artikel	nachgereicht	mit	
dem	Titel	"Ist	die	Trägheit	eines	Körpers	von	seinem	Energieinhalt	abhängig?".	Er	leitet	dort	erstmals	die	Formel		
∆𝐸 = ∆𝑚 · 𝑐"		ab,	und	zwar	aus	dem	Energieerhaltungssatz.	Wir	vereinfachen	die	Darstellung	ein	bisschen,	indem	wir	
die	Richtung	der	Energieabstrahlung	mit	der	Richtung	der	Relativbewegung	zusammenfallen	lassen.	Dadurch	können	
wir	für	die	Frequenzänderung	die	Formel	für	den	longitudinalen	Dopplereffekt	verwenden.		
	
Die	Situation	ist	identisch	mit	derjenigen	im	Abschnitt	12	:	Ein	im	System	S		ruhender	Körper	der	Masse		𝑚2		soll	
gleichzeitig	in	entgegengesetzte	Richtungen	je	eine	Energiemenge		𝐿/2		bei	der	Frequenz		𝑓		abstrahlen.	Nach	dieser	
Emission	mag	er	die	Ruhemasse	𝑚�		haben.	Der	Körper	verharrt	dabei		in		S		in	Ruhe,	da	sich	die	Impulse	der	beiden	
abgestrahlten	Energiepakete	aufheben	(oder	aus	Symmetriegründen	...).	
	
Im	Ruhesystem	des	Körpers	schreibt	sich	die	Energieerhaltung	mit			𝐸2 	= 	𝐸� 	+ 	𝐿			
	
Diesen	Vorgang	betrachten	wir	nun	aus	einem	Bezugssystem	S'	welches	sich	auf	der	Achse	der	beiden	Strahlungs-
portionen	mit	der	Geschwindigkeit		𝑣		relativ	zu	diesem	Körper	bewegt.	Der	Körper	hat	in	S'		vor	und	nach	der	Emission	
der	Quanten	die	Geschwindigkeit	𝑣	,	was	entscheidend	sein	wird.	
	
Im	System	S'	müssen	wir	bei	der	Energiebetrachtung	mit	(9.2)	auch	den	Dopplereffekt	nach	(1.4)	berücksichtigen:	
	

𝐸2′	 = 	𝐸�′	 + 	
𝐿
2
·

(𝑐	 + 	𝑣)
(𝑐 − 𝑣)

	 +
(𝑐	– 	𝑣)
(𝑐 + 𝑣)

	 	= 	𝐸�′	 + 	
𝐿
2
·

𝑐 + 𝑣 	+ 	 𝑐 − 𝑣
𝑐" 	− 	𝑣"

	= 	𝐸�′	 + 	𝐿 ·
1	

1	–	𝑣
"

𝑐"

	

	
Also	gilt	

(𝐸2′ − 𝐸�′) − (	𝐸2 − 𝐸�) 	= 	 (𝐸2′ − 𝐸2) − (𝐸�′ − 𝐸�) 	= 		𝐿 · 	
1	

1	–	𝑣
"

𝑐"

− 1 	

	
(𝐸2′ − 𝐸2)	ist	aber	als	kinetische	Energie		𝐾2′		des	Körpers	im	System		S'		vor	der	Emission	zu	interpretieren,	(𝐸�′ − 𝐸�)	
ist	entsprechend	die	kinetische	Energie	𝐾�′		des	Körpers	im	System		S'		nach	der	Emission.	Für	die	Differenz	dieser	
kinetischen	Energien	gilt	also	
	

𝐾2′	 − 𝐾�′	 = 	𝐿 · 	
1	

1	–	𝑣
"

𝑐"

− 1 = 	𝐿 · 1 +
1
2
·
𝑣"

𝑐"
+
3
8
·
𝑣}

𝑐}
+
15
48

·
𝑣�

𝑐�
+		. . .		+(−1) 	

	
Die	kinetische	Energie	hat	also	abgenommen,	obwohl	die	Relativgeschwindigkeit	dieselbe	geblieben	ist	!!	Die	
Abstrahlung	der	Energie		𝐿		muss	demnach	mit	einer	Massenabnahme	verbunden	sein.	Unter	Vernachlässigung	der	
Glieder	höherer	Ordnung	gilt	für	kleine	Geschwindigkeiten	𝑣		(und	𝑣	darf	bei	unserer	Betrachtung	beliebig	klein	sein!)	
	

1
2
· (𝑚2 − 𝑚�) · 𝑣" 	= 	𝐿 ·

1
2
·
𝑣"

𝑐"
																	oder																		∆𝒎	 = 	𝑳	/	𝒄𝟐						

	
Einstein	schreibt:	"Gibt	ein	Körper	die	Energie		𝐿		in	Form	von	Strahlung	ab,	so	verkleinert	sich	seine	Masse	um		𝐿	/	𝑐".	
Hierbei	ist	offenbar	unwesentlich,	dass	die	dem	Körper	entzogene	Energie	gerade	in	Energie	der	Strahlung	übergeht,	so	
dass	wir	zu	der	allgemeineren	Folgerung	geführt	werden:	Die	Masse	eines	Körpers	ist	ein	Mass	für	dessen	Energie-
inhalt."	 	



14.		Die	Längenkontraktion	
	
	
Die	Inertialsysteme	von	"Rot"	und	"Schwarz"	sollen	sich	mit		𝑣		respektive		–	𝑣		gegeneinander	bewegen.	Die	Systeme	
seien	wie	immer	so	ausgerichtet,	dass	ihre	x-Achsen	aufeinander	liegen	und	die	y-Achsen	und	z-Achsen	parallel	sind.	
	
Schwarz	markiert	nun	zwei	Punkte	A	und	B	auf	seiner	x-Achse	und	misst	die	Länge		∆𝑥		dieser	Strecke	mit	seinen	
Massstäben	oder	mithilfe	einer	Uhr	in	A	und	eines	Spiegels	in	B.	Schwarz	stellt	zudem	fest,	dass	Rot	die	Zeit		∆𝑡	braucht	
um	diese	Strecke	zurückzulegen.	Schwarz	kennt	dann	die	Relativgeschwindigkeit		𝑣 = ∆𝑥	/	∆𝑡	.	
Wie	misst	der	vorbeifliegende	Rot	die	Länge	dieser	Strecke	?	Er	muss	zuerst	genauso	wie	Schwarz	die	Relativgeschwin-
digkeit	der	beiden	Systeme	bestimmen,	indem	er	ebenfalls	misst,	wie	lange	es	dauert,	bis	der	Punkt	A	an	einer	Strecke	
bekannter	Länge	auf	seiner		x'-Achse	vorbeigeflogen	ist.	Schwarz	und	Rot	sind	sich	(aus	Symmetriegründen)	über	den	
Betrag	der	Relativgeschwindigkeit	einig.	Nun	kann	Rot	die	Länge	der	Strecke	AB	bestimmen	indem	er	die	Zeitdauer	∆𝑡′		
misst,	die	zwischen	der	Begegnung	mit	A	und	derjenigen	mit	B	verstreicht.	Er	rechnet	sich	dann	aus				∆𝑥′ = 𝑣 · ∆𝑡′.	
Damit	gilt	
	

∆𝑥
∆𝑡
	= 	𝑣	 = 	

∆𝑥′
∆𝑡′

	

	
Für	die	gemessenen	Streckenlängen	gilt	daher	mit	dem	Resultat	(1.3)	für	die	Zeitdilatation	
	

∆𝑥′
∆𝑥

	= 	
∆𝑡′
∆𝑡
	= 	 1	–	

𝑣"

𝑐"
		

	
Rot	misst	eine	kleinere	Länge	an	der	für	ihn	schnell	vorbeifliegenden	Strecke	AB	:	
	

																			∆𝒙′	 = 	∆𝒙 ∙ 𝟏	–	
𝒗𝟐

𝒄𝟐
		

	
Schwarz	misst	die	Ruhelänge	oder	Eigenlänge	der	Strecke	AB,	sie	ist	immer	die	Längste.	
	
Die	sogenannte	Längenkontraktion	ist	somit	eine	zwingende	Folge	der	Zeitdilatation.	Schnelle	Uhren	laufen	langsamer,	
und	schnelle	Strecken	erscheinen	kürzer.	Mit	Newtons	Absoluter	Zeit	stirbt	also	auch	sein	Absoluter	Raum	!	
	
Längenmessungen	in	y-	oder	z-Richtung	sind	von	diesem	Effekt	nicht	betroffen.	Epstein	argumentiert	in	seinem	schönen	
Buch	"Relativitätstheorie	anschaulich	dargestellt"	folgendermassen:	Gäbe	es	so	etwas	wie	eine	Querkontraktion,	dann	
würden	die	beiden	Schienen	aus	der	Sicht	des	Zuges	bei	hohen	Geschwindigkeiten	zusammenrücken,	die	Spurweite	
würde	zu	eng.	Aus	der	Sicht	der	Schienen	würde	aber	der	Abstand	der	Räder	kleiner	werden,	die	Spurweite	wäre	zu	
gross.	Und	da	nicht	beides	gleichzeitig	möglich	ist	gibt	es	keine	Querkontraktion:	
	
	

																				∆𝒚′	 = 	∆𝒚												und											∆𝒛′	 = 	 ∆𝒛	
	
	
	
Zugehörige	Abschnitte	in	EEE	:	
https://www.relativity.li/de/epstein/lesen/b0_de/b3_de	
https://www.relativity.li/de/epstein/lesen/b0_de/b4_de	
https://www.relativity.li/de/epstein/lesen/b0_de/b5_de	
	
	 	

(14.1)	

(14.2)	



15.		Die	Desynchronisation	
	
	
Uhren,	die	in	gegeneinander	bewegten	Inertialsystemen	ruhen,	laufen	nicht	gleich	schnell	und	können	daher	auch	nicht	
nachhaltig	synchronisiert	werden.	Ruhende	Uhren	innerhalb	eines	Inertialsystemes	können	sehr	wohl	permanent	
synchronisiert	werden.	Dieser	Prozess	ist	eigentlich	eine	Definition	der	Zeit	innerhalb	eines	Inertialsystems.	Mehr	dazu	
findet	sich	auf	https://www.relativity.li/de/epstein/lesen/b0_de/b1_de	.	
	
Synchronisiert	Schwarz	seine	Uhren	im	System	S	(t,x,y,z)	und	macht	Rot	dasselbe	in	seinem	System	S'	(t',x',y',z'),	so	sind	
für	beide	die	Uhren	in	ihrem	eigenen	System	synchronisiert	-	aber	jeder	hält	die	Uhren	des	anderen	in	einem	ganz	
präzisen	Sinn	für	desynchronisiert	!!	Schwarz	hält	die	Uhren	von	Rot,	die	in	ihrem	System	einen	Eigenabstand	∆𝑥′	in	der	
x'-Richtung	haben,	nach	der	folgenden	Formel	für	desynchronisiert:	
	

∆𝒕′	 = 	−∆𝒙′ · 	
𝒗
𝒄𝟐
		

oder	
	

∆𝒕′ · 𝒄	 = 	−∆𝒙′ · 	
𝒗
𝒄
		

	
Der	Faktor		𝑐		links	in	der	zweiten	Formel	dient	nur	der	Umrechnung	von	Zeiten	in	Längen.	Die	Desynchronisation	ist	
damit	proportional	dem	Eigenabstand	der	Uhren	in	Bewegungsrichtung	und	dem	Verhältnis	von	𝑣		zu	𝑐	.	Das	
Minuszeichen	bedeutet,	dass	vorauseilende	Uhren	zeitlich	im	Rückstand	sind	(aus	der	Sicht	von	Schwarz	!).	Diese	Uhren	
sind	ja	auch	dem	Synchronisationsimpuls	davongelaufen	...	
	
Eine	kurze	Herleitung	dieses	Resultates	finden	Sie	auf		https://www.relativity.li/de/epstein/lesen/b0_de/b6_de	.	
	
Ohne	dieses	dritte	Grundphänomen	bei	der	Erfassung	von	zeitlichen	und	räumlichen	Messwerten	erscheint	die	SRT	
schnell	widersprüchlich.	Wie	ist	es	möglich,	dass	für	jeden	die	Uhren	des	anderen	langsamer	laufen	?	Führt	das	nicht	zur	
Ungleichungskette		∆𝑡′	 < 	∆𝑡	 < 	∆𝑡′		??	Viele	populäre	'Widerlegungen'	der	SRT	basieren	auf	diesem	Kurzschluss.	
	
Erst	wenn	man	die	Desynchronisation	eines	Satzes	von	schnellen	Uhren	hinzunimmt	kann	man	alle	Messungen	in	zwei	
Bezugssystemen	widerspruchsfrei	zusammenfügen,	wie	die	Musteraufgabe	im	folgenden	Abschnitt	zeigt.	Leider	wird	
dieser	Punkt	nur	in	wenigen	Büchern	zur	SRT	klar	herausgearbeitet,	meist	wird	das	gar	nicht	erwähnt.	
	
	
	
	 	

(15.1)	

(15.2)	



16.		Eine	Musteraufgabe	zur	Kinematik	
	
	
Wie	die	drei	Grundphänomene	Zeitdilatation,	Längenkontraktion	und	Desynchronisation	zusammenspielen	sieht	man	
schön	anhand	der	folgenden	simplen	Musteraufgabe.	
	
Ein	Teilchen	bewege	sich	mit	der	Geschwindigkeit		𝑣 = 0.8 · 𝑐		durch	ein	12	m	langes	Rohr,	welches	an	beiden	Enden	
mit	Detektoren	ausgerüstet	ist,	sodass	man	die	Durchflugzeit	sehr	genau	messen	kann.	Schwarz	sei	das	System	in	
welchem	das	Rohr	ruht,	Rot	nennen	wir	das	Ruhesystem	des	Teilchens.	Es	sollen	die	folgenden	Fragen	beantwortet	
werden:	
	

1. Wie	lange	dauert	der	Flug	des	Teilchens	durch	das	Rohr	für	Schwarz	?	
2. Wieviel	Zeit	verstreicht	dabei	im	roten	System	nach	der	Ansicht	von	Schwarz	?	
3. Welche	Länge	hat	das	Rohr	für	Rot	?	
4. Wie	lange	dauert	es	für	Rot,	bis	das	Rohr	über	das	Teilchen	hinweggerast	ist	?	
5. Wieviel	Zeit	verstreicht	aus	der	Sicht	von	Rot	während	dieses	Vorbeiflugs	auf	jeder	Uhr	von	Schwarz	?	
6. Wie	erklärt	sich	Rot	den	Messwert	von	Schwarz	?	

	
Die	letzten	beiden	Fragen	werden	in	den	meisten	Schulbüchern	einfach	weggelassen,	dabei	bilden	sie	den	Schlussstein	
im	Bogen	des	Verständnisses	der	SRT.	Sie	müssen	auch	weggelassen	werden	wenn	man	die	Desynchronisation	nicht	
behandelt	...	
	
Dabei	sind	die	Fragen	alle	schnell	und	leicht	zu	beantworten.	Mit		√		bezeichnen	wir	den	Term		
	

√		= 1	–	
𝑣"

𝑐"
	= 	 1 − 0.8" 	= 	0.6	

	
1. Die	Zeitdauer	erhalten	wir,	wenn	wir	die	Weglänge	durch	die	Geschwindigkeit	dividieren:		

∆t		=		∆x	/	v		=		12	m	/	(0.8·3·108	m/s)		=		50	ns	
2. Rot	wird	aus	der	Sicht	von	Schwarz	wegen	der	Zeitdilatation	eine	kürzere	Dauer	messen:	

∆t'		=		∆t	·	√		=		50	ns	·	0.6		=		30	ns	
3. Rot	sieht	das	schnelle	Rohr	Lorentz-verkürzt:			∆x'		=		∆x	·	√		=		12	m	·	0.6		=		7.2	m	
4. Bis	das	7.2	m	lange	Rohr	über	Rot	hinweggeflogen	ist	verstreicht	auf	der	Uhr	von	Rot	die	Zeit	

∆t'		=		∆x'	/	v		=		7.2	m	/	(0.8·3·108	m/s)		=		30	ns		
Schwarz	und	Rot	sind	sich	also	einig	über	den	Messwert	von	Rot	!	

5. Die	schnellen	Uhren	von	Schwarz	ticken	aus	der	Sicht	von	Rot	verlangsamt,	auf	jeder	der	beiden	schwarzen	
Uhren	vergeht	aus	der	Sicht	von	Rot	nur	die	Zeit				∆t		=		∆t'	·	√		=		30	ns	·	0.6		=		18	ns			!!	

6. Rot	kann	sich	trotzdem	ausrechnen,	dass	Schwarz	eine	Zeitdauer	von	50	ns	misst.	Die	beiden	Uhren	von	
Schwarz	sind	ja	aus	der	Sicht	von	Rot	desynchronisiert,	und	zwar	um	den	Betrag	
∆t		=		∆x	·	v	/	c2		=		12	m	·	0.8	/	(3·108	m/s)		=		32	ns	.	Zusammen	mit	den	18	ns,	welche	'eigentlich'	auf	den	
Uhren	von	Schwarz	während	des	Vorbeiflugs	verstreichen	(aus	der	Sicht	von	Rot),	ergeben	sich	ebenfalls	die	
50	ns,	die	Schwarz	tatsächlich	misst.	Vergewissern	Sie	sich,	dass	auch	das	Vorzeichen	der	Desynchronisation	
von	der	Formel	richtig	bestimmt	wird	!	
	
	

Schwarz	braucht	für	seine	Messung	zwei	distante	Uhren,	deren	Synchronisation	kein	objektiver	Tatbestand	ist.	Rot	und	
Schwarz	können	sich	beide	ausrechnen,	welche	Werte	der	andere	messen	wird,	und	diese	Werte	stimmen	mit	den	
jeweiligen	gemessenen	Werten	auch	überein.	Sie	messen	zwar	beide	unterschiedliche	Zeitintervalle	und	Strecken-
längen,	aber	es	ergeben	sich	daraus	keine	Widersprüche.	Die	gemessenen	Werte	sind	'relativ',	aber	nicht	beliebig.	
	
	
	



17.		Quergeschwindigkeiten	und	der	transversale	Dopplereffekt	
	
	
	
Die	Inertialsysteme	von	"Rot"	und	"Schwarz"	sollen	sich	mit		𝑣		respektive		–	𝑣		gegeneinander	bewegen.	Die	Systeme	
seien	wie	immer	so	ausgerichtet,	dass	ihre	x-Achsen	aufeinander	liegen	und	die	y-Achsen	und	z-Achsen	parallel	sind.	
	
Im	Bezugssystem	S'	(t',x',y',z')	von	Rot	soll	sich	nun	ein	Objekt	mit	der	Geschwindigkeit		𝑢′		in	der	y'-Richtung	bewegen.	
Wie	gross	ist	die	y-Komponente		𝑢		der	Geschwindigkeit,	die	Schwarz	in	seinem	System	S	(t,x,y,z)	an	diesem	Objekt		
misst	?	
	

Es	ist		𝑢 = ∆𝑦/∆𝑡		,		𝑢′ = ∆𝑦′/∆𝑡′		.	Nach	(14.2)	gilt		∆𝑦 = ∆𝑦′	,	und	für	Schwarz	gilt	zudem		∆𝑡′ = ∆𝑡 · 1	–	1
�

��
			

	
Damit	können	wir	für		𝑢		schreiben	
	

																			𝒖	 = 		
∆𝑦
∆𝑡
		= 		

∆𝑦′
∆𝑡

		= 		
∆𝑦′
∆𝑡′

· 1	–	
𝑣"

𝑐"
		= 		𝒖′ · 𝟏	–	

𝒗𝟐

𝒄𝟐
				

	
Schwarz	sieht	diese	Quergeschwindigkeit	verlangsamt	um	den	bekannten	Wurzelfaktor.	Für	Schwarz	läuft	im	System	
von	Rot	alles	etwas	retardiert	ab.	Mit	dieser	Bemerkung	kommen	wir	nochmals	auf	den	transversalen	Dopplereffekt	
zurück:	
	
	
Rot	soll	im	Abstand		∆𝑥	die	x-Achse	von	Schwarz	mit	der	Geschwindigkeit		𝑣		in	y-Richtung	überqueren.	Dabei	ändert	
sich	der	Abstand	von	Rot	zu	Schwarz	gerade	nicht.	Trotzdem	ist	ein	Oszillator	von	Rot	aus	der	Sicht	von	Schwarz	der	
Zeitdilatation	unterworfen.	Wenn	er	in	seinem	System	mit	der	Frequenz		𝑓′		sendet	empfängt	Schwarz	die	verminderte	
Frequenz	
	

																																																𝒇	 = 	𝒇′ · 𝟏	–	
𝒗𝟐

𝒄𝟐
	

	
Das	ist	nochmals	die	Formel	für	den	sogenannten	'transversalen	Dopplereffekt'.	Dieser	ist	ein	rein	relativistisches	
Phänomen,	er	hat	keine	Entsprechung	in	der	'klassischen'	Physik.	Aus	der	Sicht	von	Schwarz	laufen	eben	im	schnellen	
System	von	Rot	wirklich	alle	Vorgänge	etwas	retardiert	ab	...	
	
...	und	für	Rot	ist	es	natürlich	genau	umgekehrt	!	
	
	
	
	
	
	 	

(17.1)	

(1.6)						≡					(17.2)	



18.		Eine	Herleitung	des	relativistischen	Impulses	ohne	Verwendung	der	Erhaltungssätze	
	
	
	
Im	Abschnitt	4	haben	wir	die	Formeln	für	die	'dynamische	Masse'	und	den	relativistischen	Impuls	aus	dem	Wunsch	
abgeleitet,	dass	weiter	Erhaltungssätze	für	den	Impuls	und	für	eine	'dynamische	Masse'	gelten	sollen.	Nun	stellen	wir	
noch	eine	elegante	Herleitung	der	Ausdrücke	
	für	diese	Grössen	vor,	welche	keinen	Gebrauch	macht	von	diesen	Erhaltungssätzen.	
	
Die	Darstellung	ist	identisch	mit	derjenigen	auf		https://www.relativity.li/de/epstein/lesen/e0_de/e1_de	.		
Zwei	eineiige	Zwillige	(bei	Epstein	heissen	sie	Peter	und	Danny)	sollen	auf	zwei	Einstein-Zügen	aneinander	vorbeifahren	
und	dabei	einen	völlig	symmetrischen	Faustschlag	senkrecht	zur	Fahrtrichtung	inszenieren:	

	

	
	

Ihre	Relativgeschwindigkeit	in	der	Fahrtrichtung	des	Zuges	sei		𝑣		,	beide	Fäuste	sollen	dieselbe	Ruhemasse		m0		haben	
und	beide	sollen	(in	ihrem	eigenen	Bezugssystem)	mit	derselben	Geschwindigkeit	𝑢	quer	zur	Fahrtrichtung	zuschlagen.	
Aus	Symmetriegründen	gilt	somit	für	die	beiden	Impulse	
	

𝑝£(𝑃𝑒𝑡𝑒𝑟) 	= 		−	𝑝£(𝐷𝑎𝑛𝑛𝑦)		
	
Peter	sieht	die	Quergeschwindigkeit	von	Dannys	Faust	aber	nach	(17.1)	verlangsamt	und	er	wundert	sich,	dass	Danny	
trotzdem	genau	gleich	hart	zugeschlagen	hat	wie	er	selber.	Das	ist	nur	möglich,	wenn	Danny	mehr	Masse	in	seiner	
Faust	versteckt	hat	!	Wir	müssen	also	zulassen,	dass	die	Masse	eines	Objekts	von	dessen	Relativgeschwindigkeit	
abhängig	sein	kann.	Peter	stellt	daher	mit	(17.1)	für	die	Impulse	in	der	y-Richtung	die	folgende	Gleichung	auf:	
	

	𝑚� · 𝑢	 = 		−	𝑚1¨�© · 𝑢′		 = 	−	𝑚1¨�© · (−𝑢) · 1	–	
𝑣"

𝑐"
	

	
Dabei	soll	hier	für	den	Moment	im	tiefgestellten	Index	der	Ausdruck		𝑣 + 𝑢′		für	den	Betrag	der	vektoriellen	Summe	der	
beiden	Geschwindigkeitskomponenten	stehen.	Wir	dividieren	durch		𝑢		und	erhalten		
	

			𝑚� 	= 	𝑚1¨�© · 1	–	
𝑣"

𝑐"
							

	
Diese	Gleichung	gilt	für	beliebig	kleine	Quergeschwindigkeiten		𝑢	.	Sie	gilt	somit	auch	im	Grenzfall		𝑢 → 0	.	Dann	ist	
auch		𝑢′ = 0	,		𝑚�		wird	zu	𝑚2	,		𝑚1¨�©		wird	zu	𝑚1		und	wir	erhalten	die	Gleichungen	(4.1)	und	(4.2)	:	
	

					𝒎𝒗 		= 		
𝒎𝟎

𝟏	–	𝒗
𝟐

𝒄𝟐

		= 		𝜸 · 	𝒎𝟎																	und																	𝒑	 = 	𝒎𝒗 ∙ 𝒗		 = 		𝜸 · 	𝒎𝟎 	 · 𝒗	

	

					(18.1)	



19.		Aus	der	Impulserhaltung	folgt	die	Erhaltung	der	'dynamischen	Masse'	
	
	
Im	Abschnitt	18	haben	wir	die	Formeln	(4.1)	und	(4.2)	für	die	dynamische	Masse	und	den	relativistischen	Impuls	
hergeleitet	ohne	die	Erhaltungssätze	für	Masse	und	Energie	vorauszusetzen.	Jetzt	zeigen	wir	noch,	dass	aus	dem	
Impulserhaltungssatz	folgt,	dass	ein	Massen-Erhaltungssatz	nur	für	die	'dynamische	Masse'	gelten	kann.	Die	Darstellung	
ist	dem	schönen	Buch	"The	Wonderful	World	of	Relativity"	von	Andrew	M.	Steane	(Oxford	University	Press	2011)	
entnommen.	Das	gilt	auch	für	die	folgende	Figur:	
	

	
	
Die	linke	Bildhälfte	(a)	zeigt	eine	ruhende	Masse	M	,	welche	in	zwei	Stücke	mit	den	Ruhemassen		𝑚�		und		𝑚"		zerplatzt.	
Diese	fliegen	wegen	der	Impulserhaltung	mit	den	Geschwindigkeiten		𝑣�		und		𝑣"		in	entgegengesetzte	Richtungen	
auseinander.	Die	rechte	Bildhälfte	(b)	zeigt	denselben	Vorgang	in	einem	Bezugssystem	welches	sich	relativ	zum	
vorangehenden	mit	der	Geschwindigkeit		𝑢		nach	unten	bewegt.	Die	vertikale	Komponente	der	Impulserhaltung	liefert	
die	Gleichung	
	

𝑀 · 𝑢 · 𝛾� 	= 	𝑚� · 𝑢 · 𝛾K« 		+ 	𝑚" · 𝑢 · 𝛾K�		
	
Nach	der	Division	durch		𝑢		haben	wir	noch	
	

𝑀 · 𝛾� 	= 	𝑚� · 𝛾K« 		+ 	𝑚" · 𝛾K�		
	
Diese	Gleichung	gilt	für	beliebig	kleine	Werte	der	Geschwindigkeit	𝑢	.	Der	Grenzwert	für		𝑢		gegen	null	liefert	
	

𝑀	 = 	𝑚� · 𝛾1« 		+ 	𝑚" · 𝛾1�		
	
Das	ist	die	Erhaltung	der	'dynamischen	Masse'	bei	diesen	Vorgang	!	Die	Ruhemasse	bleibt	nicht	erhalten,	die		
Werte	von		𝛾1« 		und		𝛾1� 		sind	ja	als	Kehrwerte	des	Wurzelausdrucks	grösser	als	1	;	es	ist			𝑀	 > 	𝑚� 	+ 	𝑚"		.	
	
Nun	schreiben	wir	(immer	noch	mit	Andrew	M.	Steane)	die	Gleichung	(19.1)	noch	ein	bisschen	um:	
	

𝑴	 = 	𝒎𝟏 	+ 	𝒎𝟏 · (𝜸𝒗𝟏 − 𝟏) 		+ 	𝒎𝟐 	+ 	𝒎𝟐 · (𝜸𝒗𝟐 	− 𝟏)	
	
Man	sieht	schön	wie	sich	rechts,	nach	der	Spaltung,	die	gesamte	dynamische	Masse	aus	den	beiden	Ruhemassen	und	je	
einer	kleinen	zusätzlichen	Masse	zusammensetzt.	Multiplizieren	wir	die	ganze	Gleichung	mit		𝑐"		entsteht	aus	dem	
Erhaltungssatz	der	dynamischen	Massen	der	Erhaltungssatz	der	Gesamtenergie:	
	

𝑴	∙ 𝒄𝟐 	= 	𝒎𝟏	∙ 𝒄𝟐 	+ 	𝒎𝟏	∙ 𝒄𝟐 · (𝜸𝒗𝟏 − 𝟏) 		+ 	𝒎𝟐	∙ 𝒄𝟐 	+ 	𝒎𝟐	∙ 𝒄𝟐 · (𝜸𝒗𝟐 	− 𝟏)	
	
Die	Gesamtenergie	setzt	sich	rechts	zusammen	aus	den	beiden	Ruheenergien	und	den	beiden	kinetischen	Energien.	
Akzeptiert	man	die	Existenz	einer	Ruheenergie	haben	wir	hier	eine	weitere	Herleitung	des	technischen	Terms	für	die	
kinetische	Energie	aus	dem	Impulserhaltungssatz.	
	
Diese	Herleitung	wird	in	der	zeitlichen	Umkehr	als	vollkommen	inelastischer	Stoss	schon	1920	von	Max	Born	in	seinem	
Buch	"Die	Relativitätstheorie	Einsteins"	vorgestellt	(neu	aufgelegt	im	Springer	Verlag	ab	1964).	

(19.1)	

(19.2)	

(19.3)	



20.		Die	Lorentz-Transformationen	
	
	
Die	Inertialsysteme	von	"Rot"	und	"Schwarz"	sollen	sich	mit		𝑣		respektive		–	𝑣		gegeneinander	bewegen.	Die	Systeme	
seien	wie	immer	so	ausgerichtet,	dass	ihre	x-Achsen	aufeinander	liegen	und	die	y-Achsen	und	z-Achsen	parallel	sind.	
Schwarz	ordne	in	seinem	Bezugssystem		S		Ereignissen	die	Koordinaten	(t,x,y,z)	zu,	Rot	bestimme	für	dieselben	
Ereignisse	in	seinem	Bezugssystem		S'		die	Koordinaten	(t',x',y',z')	.	Wie	lassen	sich	die	Koordinaten	desselben	
Ereignisses	von	einem	System	ins	andere	umrechnen	?	
	
Weil	es	nach	(14.2)	keine	Querkontraktion	gibt,	gilt	in	unserer	Konfiguration	
	

																												𝒚	 = 	𝒚′										und									𝒛	 = 	𝒛′	
	
Für	die	Umrechnung	der	Zeitkoordinaten	und	der	x-Koordinaten	nehmen	wir	zusätzlich	an,	dass	Rot	und	Schwarz	bei	
der	Begegnung	ihrer	Nullpunkte	auf	der	x-Achse	ihre	dortigen	Uhren	auf	null	gestellt	haben	und	anschliessend	alle	
Uhren	in	ihrem	jeweiligen	Bezugssystem	mit	der	'Mutteruhr'	im	Nullpunkt	synchronisiert	haben.	Es	können	ja	nur	die	
Messwerte	von	Zeitintervallen	und	Ortsintervallen	(also	Streckenlängen)	verglichen	werden,	es	muss	also	zuerst	ein	
gemeinsames	Referenzereignis	vorliegen.	Späteren	Ereignissen	wird	dann	der	zeitliche	und	der	räumliche	Abstand	zu	
diesem	Referenzereignis	oder	Nullpunkt-Ereignis	zugeordnet.	
	
Rot	messe	nun	die	Koordinaten	(𝑡′, 𝑥′)	zu	einem	bestimmten	Ereignis.	Die	rote	Uhr	am	Ort		𝑥′		ist	aber	für	Schwarz	nach	
(14.1)	gegenüber	der	Nullpunktsuhr	von	Rot	desynchronisiert,	diese	zeigt	dann	schon	die	Zeit	
	

𝑡′	 + 	
𝑥′ · 𝑣
𝑐"

		
	
an.	Weil	auch	die	Nullpunktsuhr	wie	alle	Uhren	von	Rot	um	den	Wurzelterm	langsamer	geht	als	die	Uhren	von	Schwarz	
berechnet	sich	Schwarz	seinen	Uhrenstand	bei	diesem	Ereigniss	zu	
	

																										𝒕	 = 	
	𝒕′	 + 	𝒙′ · 𝒗𝒄𝟐 	

𝟏	–	𝒗
𝟐

𝒄𝟐

	

	
Welchen	Abstand		𝑥		ordnet	Schwarz	diesem	Ereignis	zu	?	Der	Nullpunkt	von	Rot	bewegt	sich	nach	der	Formel	
𝑂¯|{ = 𝑣 · 𝑡	.	Schwarz	sagt	dass	Rot	den	Abstand		𝑥′		des	Ereignisses	vom	eigenen	Nullpunkt	nach	(14.1)	lorentz-
verkürzt	sieht.	Daher	notiert	sich	Schwarz	
	

																								𝒙	 = 	𝑣 · 𝑡	 +
𝑥′

1	–	𝑣
"

𝑐"

	= 	
𝑣 · 𝑡′

1	–	𝑣
"

𝑐"

	+ 	
𝑥′

1	–	𝑣
"

𝑐"

	= 	
	𝒙′ + 𝒗 · 𝒕′

𝟏	–	𝒗
𝟐

𝒄𝟐

		

	
	
Die	räumlichen	und	zeitlichen	Koordinaten	lassen	sich	nicht	mehr	separieren.	
	
Die	Situation	von	Schwarz	und	Rot	ist	völlig	symmetrisch,	für	die	umgekehrte	Umrechnung	ist	nur	das	Vorzeichen	der	
Relativgeschwindigkeit		𝑣		zu	wechseln.	Diesem	Satz	von	Koordinatentransformationen	hat	Henri	Poincaré	zu	Recht	den	
Namen	'Lorentz-Transformationen'	gegeben.	Hendrik	Antoon	Lorentz	hat	sie	kurz	vor	1900	als	Kunstgriff	eingeführt	um	
den	Konflikt	zwischen	der	konstanten	Lichtgeschwindigkeit	und	dem	Äther	rechnerisch	zu	beheben.	Poincaré	hat	auch	
gezeigt,	dass	diese	Transformationen	eine	Gruppe	bilden	im	Sinne	der	Gruppentheorie.	
	
	
	
	
	 	

(20.1)	

(20.2)	

(20.3)	



Wir	stellen	die	Transformationen	in	beide	Richtungen	noch	zusammen:	
	
	

𝒕	 = 	
𝒕′	 + 	𝒙′ · 𝒗𝒄𝟐

𝟏	–	𝒗
𝟐

𝒄𝟐

																																																			𝒕′	 = 	
𝒕	 − 	𝒙 · 𝒗𝒄𝟐

𝟏	–	𝒗
𝟐

𝒄𝟐

						

	
	

		𝒙	 = 	
𝒙′	 + 	𝒗 · 𝒕′

𝟏	–	𝒗
𝟐

𝒄𝟐

																																																		𝒙′	 = 	
𝒙	 − 	𝒗 · 𝒕

𝟏	–	𝒗
𝟐

𝒄𝟐

								

	
	

			𝒚	 = 	𝒚′																																																																	𝒚′	 = 	𝒚									
	

																										𝒛 = 	𝒛′																																																																		𝒛′	 = 	𝒛										
	
	
Wir	werden	diese	Transformationen	brauchen	um	Differentiale	zu	berechnen	wie	etwa		𝑑𝑥′	/	𝑑𝑡			oder		𝑑𝑡	/	𝑑𝑡′	.	
	
	
Newtons	absolute	Zeit	verlangt		𝑡 = 𝑡′	,	zusammen	mit	seinem	absoluten	Raum	folgen	noch			𝑥 = 𝑥′ + 𝑣 · 𝑡′			und	
𝑥′ = 𝑥 − 𝑣 · 𝑡		.	Das	sind	die	bekannten	Galilei-Transformationen.	Sie	folgen	aus	den	Lorentz-Transformationen	wenn	
man	den	Limes	für		𝑐	 → ∞		bildet.	Allein	schon	die	Existenz	einer	Grenzgeschwindigkeit	ist	nicht	kompatibel	mit	
Newtons	Vorstellungen	von	Zeit	und	Raum,	sie	erzwingt	die	Aussagen	der	speziellen	Relativitätstheorie	!	
	
	
Wir	schreiben	diese	Lorentz-Transformationen	auch	noch	unter	Verwendung	der	Terme		𝛽1		und		𝛾1		wie	sie	in	(6.2)		
und	(6.3)	definiert	worden	sind:	
	
	

𝒕	 = 𝜸𝒗 · 𝒕′	 + 	𝜷𝒗 ·
𝒙′
𝒄

																																																	𝒕′	 = 𝜸𝒗 · 𝒕	 − 	𝜷𝒗 ·
𝒙
𝒄
																

	
𝒙	 = 	𝜸𝒗 · 	𝒙′	 + 	𝜷𝒗 · 𝒄 · 𝒕′	 																																										𝒙′	 = 	𝜸𝒗 · 	𝒙	 − 	𝜷𝒗 · 𝒄 · 𝒕	 									

	
𝒚	 = 	𝒚′																																																																						𝒚′	 = 	𝒚																			

	
																							𝒛 = 	𝒛′																																																																								𝒛′	 = 	𝒛																				

	
	
Multipliziert	man	die	oberen	Gleichungen	für	𝑡	und	𝑡′	mit	𝑐	erhalten	die	Gleichungen	für	die	Variablen		𝑐 · 𝑡		und		𝑐 · 𝑡′			
dieselbe	Gestalt	wie	diejenigen	für	die	Variablen	𝑥	und	𝑥′	.	Dasselbe	wird	auch	erreicht,	wenn	man	durch	die	Wahl	von	
anderen	Einheiten	für	die	Zeit-	oder	die	Längenmessung	dafür	sorgt,	dass	der	Wert	der	Lichtgeschwindigkeit	1	wird.		
	
Die	gesamte	Symmetriegruppe	der	SRT	entsteht,	wenn	man	zu	diesen	Lorentz-Transformationen	noch	die	Rotationen	
des	Raumes	hinzunimmt.	Diese	umfassendere	Gruppe	nennt	man	manchmal	die	Poincaré-Gruppe.	Poincaré	hat	auch	
gezeigt,	dass	diese	Gruppe	gerade	die	Symmetriegruppe	der	Maxwell'schen	Theorie	darstellt.		
		
Die	Lorentz-Transformationen	behandeln	ja	nur	den	Fall	von	Bezugssystemen,	die	speziell	zueinander	ausgerichtet	sind		
(die	x-Achse	und	die	x'-Achse	liegen	aufeinander	und	sind	parallel	zur	Relativgeschwindigkeit,	zudem	sind	auch	die	
beiden	y-Achsen	und	z-Achsen	parallel).	Im	angelsächsischen	Raum	spricht	man	in	diesem	Spezialfall	auch	von	einem	
'Lorentz	boost'.	Bei	der	Wahl	des	Koordinatensystems	ist	man	aber	frei,	und	warum	soll	man	es	sich	dabei	freiwillig	
schwer	machen	?	 	

(20.4)	

(20.5)	



21.		Die	Transformation	von	beliebigen	Geschwindigkeiten	
	
	
Mithilfe	der	Lorentz-Transformationen	leiten	wir	nun	die	Formeln	für	die	'Addition'	beliebiger	Geschwindigkeiten	her.	
	
Die	Inertialsysteme	seien	wieder	wie	im	letzten	Abschnitt	festgelegt.	Rot	bewegt	sich	mit		𝒗		entlang	der	x-Achse	von	
Schwarz.	Im	System	von	Rot	bewege	sich	ein	Objekt	mit	der	Geschwindigkeit		𝒖′			in	eine	beliebige	Richtung.	Welche	
Geschwindigkeit		u		hat	dieses	Objekt	im	System	von	Schwarz	?	
	
Es	ist	
	

𝒗	 = (	𝑣	, 0	, 0	)				,					𝒖′	 = 	 (	𝑢²′	, 𝑢£′	, 𝑢³′	) 	= 		
𝑑𝑥′
𝑑𝑡′

	 ,
𝑑𝑦′
𝑑𝑡′

	 ,
𝑑𝑧′
𝑑𝑡′

								und							𝒖	 = 	 (	𝑢²	, 𝑢£	, 𝑢³	) 	= 		
𝑑𝑥
𝑑𝑡
	 ,
𝑑𝑦
𝑑𝑡
	 ,
𝑑𝑧
𝑑𝑡
	 	

	
Wir	berechnen	die	einzelnen	Komponenten	von		𝒖	.	Die	Ableitungen	gewinnen	wir	aus	den	Formeln	(20.5)	des	letzten	
Abschnitts	:	
	

𝑢² 	= 		
𝑑𝑥
𝑑𝑡
	= 	

𝑑𝑥
𝑑𝑡′

·
𝑑𝑡′
𝑑𝑡
	= 	

𝑑𝑥
𝑑𝑡′
𝑑𝑡
𝑑𝑡′

	= 	
𝛾 · 	 𝑑𝑥′𝑑𝑡′ 	+ 	𝛽 · 𝑐 ·

𝑑𝑡′
𝑑𝑡′

𝛾 · 	 𝑑𝑡′𝑑𝑡′ 	+ 	𝛽 ·
1
𝑐 ·
𝑑𝑥′
𝑑𝑡′

		= 		
𝑢²′	 + 	

𝑣
𝑐 · 𝑐 · 1

1 +	𝑣𝑐 ·
1
𝑐 · 𝑢²′

		= 		
𝑢²′	 + 	𝑣

1 + 𝑣 · 𝑢²′𝑐"
									

	
	
Wir	haben	damit	die	Formel	(2.1)	für	die	'Addition'	paralleler	Geschwindigkeiten	nochmals	hergeleitet.		
	
Ganz	ähnlich	bestimmen	wir		𝑢£	und	𝑢³	:	
	

𝑢£ 	= 		
𝑑𝑦
𝑑𝑡
	= 	

𝑑𝑦
𝑑𝑡′

·
𝑑𝑡′
𝑑𝑡
	= 	

𝑑𝑦
𝑑𝑡′
𝑑𝑡
𝑑𝑡′

	= 	
	𝑑𝑦′𝑑𝑡′ 	

𝛾 · 	 𝑑𝑡′𝑑𝑡′ 	+ 	𝛽 ·
1
𝑐 ·
𝑑𝑥′
𝑑𝑡′

		= 		
𝑢£′	

𝛾 · 1 + 	𝑣𝑐 ·
1
𝑐 · 𝑢²′

		= 		
𝑢£′

𝛾 · 1 + 𝑣 · 𝑢²′𝑐"
				

	

und	genauso													𝑢³ 	=		. . .		 . . .		= 		
𝑢³′

𝛾 · 1 + 𝑣 · 𝑢²′𝑐"
	

	
	
Will	man	𝒖′	aus		𝒗		und		𝒖		berechnen	kann	man	dieselben	Formeln	verwenden,	man	muss	nur	überall		𝒗		durch	
−	𝒗		ersetzen.	
	
	
	
	
Nun	nehmen	wir	zusätzlich	an,	dass	die	z-Komponente	von		𝒖′	(	und	damit	auch	die	z-Komponente	von	𝒖	)		null	sei.		
Das	ist	keine	Einschränkung	der	Allgemeinheit,	durch	Rotation	der	Systeme		S		und		S'		um	die	x-Achse	lässt	sich	immer	
erreichen	dass	die	x-y-Ebene	mit	der	Ebene	zusammenfällt,	welche	durch		𝒗		und		𝒖′		aufgespannt	wird.	
	
	𝛼′		soll	den	Zwischenwinkel	von		𝒖©	und	𝒗		bezeichnen.	Mit		𝑢³′ = 0		gilt	
	

𝑡𝑎𝑛(𝛼′) 	= 	
𝑢£′
𝑢²′

	

	
Welchen	Winkel		𝛼		bilden	dann		𝒖		und		𝒗		?		
	
	
	
	

(21.1)	

(21.2)	

(21.3)	

(21.4)	



Wir	berechnen		𝑡𝑎𝑛(𝛼)		mit	(21.1)	und	(21.2)	:	
	
	

																																				𝑡𝑎𝑛(𝛼) 	= 	
𝑢£
𝑢²
	= 	

𝑢£′

𝛾 · 1 + 𝑣 · 𝑢²′𝑐"
	

𝑢²′	 + 	𝑣

1 + 𝑣 · 𝑢²′𝑐"
	
	= 	

𝑢£′ · 1	–	𝑣
"

𝑐"
𝑢²′	 + 	𝑣

	= 	
𝑢£′

𝛾 · 𝑢²′	 + 	𝑣
	

	
	
		
	
Aus			

𝒖" 	= 	 𝑢² " 		+ 𝑢£
"
					,					𝒖′" 	= 	 𝑢²′ " 		+ 𝑢£′

"
								und							𝑡𝑎𝑛(𝛼′) 	= 	

𝑢£′	
𝑢²′	

						

	
erhält	Einstein	"nach	einfacher	Rechnung"	
	
	

																		𝒖	 = 	
(𝑣" 	+ 𝑢′" 	+ 2 · 𝑣 · 𝑢′ · 𝑐𝑜𝑠	𝛼′	) 	− 	 𝑣 · 𝑢′ · 𝑠𝑖𝑛	𝛼′𝑐

"
	

1 + 𝑣 · 𝑢²′ · 𝑐𝑜𝑠	𝛼′𝑐"
	

	
	
Er	schreibt	dazu:	"Es	ist	bemerkenswert,	dass		𝒗		und		𝒖©		in	symmetrischer	Weise	in	den	Ausdruck	für	die	resultierende	
Geschwindigkeit	eingehen.	Hat	auch		𝒖©	die	Richtung	der	x-Achse	so	erhalten	wir	..."	...	wieder	die	Formel	(2.1).	Dann	ist	
ja		𝑐𝑜𝑠(𝛼′) = 1		und		𝑠𝑖𝑛(𝛼′) = 0	.			
	
Einsteins	"einfache	Rechnung"	ist	tatsächlich	mit	den	Formeln	(21.1)	und	(21.2)	gut	durchführbar.	
	
	
	
	
Jetzt	können	wir	auch	die	Formel	(17.1)	noch	ein	bisschen	'gelehrter'	herleiten.	Für	eine	reine	Quergeschwindigkeit		
𝒖′	 = 	 (	0	, 𝑢£′	, 0	)	gilt	nach	(21.2)	
	

																												𝒖𝒚 	= 		
𝑢£′

𝛾 · 1 + 𝑣 · 𝑢²′𝑐"
		= 		

𝑢£′

𝛾 · 1 + 𝑣 · 0𝑐"
		= 	𝒖𝒚′ · 𝟏	–	

𝒗𝟐

𝒄𝟐
					

	
	 	

(21.5)	

(21.6)	

(17.1)					≡						(21.7)	



22.		Die	Aberration	des	Lichts	
	
	
Die	Rechnungen	des	letzten	Abschnittes	gelten	für	beliebige	Geschwindigkeiten		𝒖		und		𝒖©,	somit	auch	für	das	Licht	
welches	von	einem	weit	entfernten	Stern	bei	Schwarz	unter	dem	Winkel		𝛼		zur	x-Achse	eintrifft.	Wir	zerlegen	die	
Lichtgeschwindigkeit	in	ihre	Komponenten	
	

𝑢² 	= 	−𝑐 · 𝑐𝑜𝑠	𝛼			,					𝑢£ 	= 	𝑐 · 𝑠𝑖𝑛	𝛼							und							𝑢³ 	= 	0			
	
𝛼		ist	also	nach	unserer	Wahl	ein	spitzer	Winkel	für	Lichtquellen	mit	positiver	x-Koordinate.	Gemäss	den	Formeln	(21.1)	
und	(21.2)	hat	die	Geschwindigkeit	dieser	Lichtteilchen	für	Rot,	welcher	dem	Licht	entgegeneilt,	die	Komponenten	
	

𝑢²′	 = 		
−𝑐 · 𝑐𝑜𝑠	𝛼	 − 	𝑣

1 + −𝑣 · (−𝑐) · 𝑐𝑜𝑠	𝛼𝑐"
	= 			

−𝑐 · 𝑐𝑜𝑠	𝛼	 − 	𝑣

1 + 𝑣 · 𝑐𝑜𝑠	𝛼𝑐
		

	

	𝑢£′	 = 		
𝑐 · 𝑠𝑖𝑛	𝛼

𝛾 · 1 + −𝑣 · (−𝑐) · 𝑐𝑜𝑠	𝛼𝑐"
		= 		

𝑐 · 𝑠𝑖𝑛	𝛼

𝛾 · 1 + 𝑣 · 𝑐𝑜𝑠	𝛼𝑐
								

	
Eine	kleine	Kontrollrechnung	zeigt	dass	immer	noch	gilt			(𝑢²′)" 	+ 	(𝑢£′)" 	= 	 𝑐"	.		
	
Für	Rot	trifft	das	Licht	von	diesem	Stern	unter	einem	spitzen	Winkel		𝛼′		zur	x-Achse	ein	für	den	gilt	
	

𝒕𝒂𝒏	𝜶′	 = 	
𝑢£′
−𝑢²′

	= 	

𝑐 · 𝑠𝑖𝑛	𝛼
𝛾 · 1 + 𝑣 · 𝑐𝑜𝑠	𝛼𝑐

		

𝑐 · 𝑐𝑜𝑠	𝛼	 + 	𝑣
1 + 𝑣 · 𝑐𝑜𝑠	𝛼𝑐

	
		= 	

𝑠𝑖𝑛	𝛼

𝛾 · 𝑐𝑜𝑠	𝛼	 + 	𝑣𝑐
	= 	

𝒔𝒊𝒏	𝜶
𝜸 · 𝒄𝒐𝒔	𝜶	 + 	𝜷

		

		
Einstein	hat	in	seiner	Originalpublikation	eine	andere	Formel	bevorzugt,	die	wir	auch	leicht	herleiten	können:	
	

𝒄𝒐𝒔	𝜶′	 = 	
−𝑢²′
𝑐

	= 			
𝑐𝑜𝑠	𝛼	 + 	𝑣𝑐
1 + 𝑣 · 𝑐𝑜𝑠	𝛼𝑐

	= 			
𝒄𝒐𝒔	𝜶	 + 	𝜷
𝟏 + 	𝜷 · 𝒄𝒐𝒔	𝜶

		

	
Einstein	schreibt	dazu:	"Diese	Gleichung	drückt	das	Aberrationsgesetz	in	seiner	allgemeinsten	Form	aus."	Die	
Vorzeichen	sind	bei	ihm	allerdings	anders,	da	er	nicht	unseren	Winkel		𝛼		sondern		𝜑 = 180° − 𝛼		verwendet.	Für	den	
Spezialfall	von	𝛼 = 90°	erhält	man	aus	(21.2)		𝑐𝑜𝑠 ∝ ′ = 𝛽 = 𝑣/𝑐	.	Für	die	Abweichung		𝛿′		vom	90°-Winkel	gilt	also	
𝑠𝑖𝑛	𝛿′ = 𝑐𝑜𝑠	𝛼′ = 	𝑣/𝑐	.		
Bis	1905	hat	man,	der	'alten'	Addition	von	Geschwindigkeiten	folgend,	mit	dem	'falschen'	Ausdruck		𝑡𝑎𝑛	𝛿′ = 𝑣/𝑐		
gerechnet.	Der	Unterschied	ist	bei	diesen	kleinen	Winkeln	allerdings	verschwindend.	
	
	
Für	die	Beziehung	zwischen	𝛼	und	𝛼′		können	wir	noch	eine	schöne	symmetrische	Variante	ableiten.	Es	gilt	ja	für	alle	
Winkel	

𝑡𝑎𝑛	
𝛼
2
	= 	

𝑠𝑖𝑛	𝛼
1 + 𝑐𝑜𝑠	𝛼

	

	
Mit	(21.1)	und	(21.2)	erhalten	wir	damit	
	

tan
𝛼©

2
= 	

sin 𝛼©

1 + cos 𝛼©
	= 	

𝑢£′
𝑐

1 − 𝑢²′𝑐

	= 	
			 𝑠𝑖𝑛	𝛼
𝛾 · 1 + 𝛽 · 𝑐𝑜𝑠	𝛼 			

1 + 𝑐𝑜𝑠	𝛼	 + 	𝛽
1 + 𝛽 · 𝑐𝑜𝑠	𝛼	

		= 		
𝑠𝑖𝑛	𝛼

𝛾 · 1 + 𝛽 · 𝑐𝑜𝑠	𝛼 + 𝑐𝑜𝑠	𝛼	 + 	𝛽
		=		

	

(22.1)	

(22.2)	



= 		
𝑠𝑖𝑛	𝛼

𝛾 · 1 + 𝛽) · (1 + 𝑐𝑜𝑠	𝛼
		= 	

1
𝛾 · 1 + 𝛽

·
𝑠𝑖𝑛	𝛼

1 + 𝑐𝑜𝑠	𝛼
		= 		

1 − 𝛽"

1 + 𝛽
· 𝑡𝑎𝑛	

𝛼
2
		=			

	

= 		
1 − 𝛽 · 1 + 𝛽
1 + 𝛽 · 1 + 𝛽

· 𝑡𝑎𝑛	
𝛼
2
		= 		

1 − 𝛽
1 + 𝛽

· 𝑡𝑎𝑛	
𝛼
2
		= 	

(𝑐 − 𝑣
(𝑐 + 𝑣

	 · 𝑡𝑎𝑛	
𝛼
2
	

	
Wir	halten	fest:	
	

𝒕𝒂𝒏	
𝜶′
𝟐
	=

𝟏 − 𝜷
𝟏 + 𝜷

	 	 · 𝒕𝒂𝒏	
𝜶
𝟐
		= 	

(𝒄 − 𝒗
(𝒄 + 𝒗

	 · 𝒕𝒂𝒏	
𝜶
𝟐
	

	
Astronom	"Rot",	der	dem	Stern	mit	der	Geschwindigkeit		v		entgegeneilt,	sieht	diesen	unter	dem	kleineren	Winkel		𝛼′	
zur	Richtung	seiner	x'-Achse	als	es	Schwarz	tut,	der	relativ	zum	Stern	ruht	oder	sich	diesem	weniger	schnell	nähert.	
	
'aberrare'	heisst	abirren,	abweichen.	Diesen	Effekt	hat	James	Bradley	1727	angeblich	bei	einer	Kutschenfahrt	im	
englischen	Regen	entdeckt.	Er	beobachtete,	dass	der	Regen	immer	mehr	von	vorne	zu	kommen	schien	je	schneller	die	
Kutsche	fuhr,	und	er	realisierte,	dass	sich	dieser	Effekt	bei	einer	endlichen	Lichtgeschwindigkeit	auch	beim	Licht	
bemerkbar	machen	müsste.	
	
Mit	der	Geschwindigkeit	der	Erde	auf	ihrer	Umlaufbahn	um	die	Sonne	(	etwa	30	km/s	)	macht	das	bei	einem	Stern	der	
querab	zur	Bahnrichtung	liegt	(	𝛼	=	90°	)	etwa	20	Bogensekunden	aus	:	
	

𝑡𝑎𝑛	
𝛼′
2
	= 	

(𝑐 − 𝑣
(𝑐 + 𝑣

	 · 𝑡𝑎𝑛	
90°
2
	≈ 	

300′000 − 30
300′000 + 30

	 · 1	

	

𝛼′	 = 2 · 	
𝛼′
2
	= 	2 · 𝑎𝑟𝑐	𝑡𝑎𝑛	

300′000 − 30
300′000 + 30

		≈ 		89°	59′	39.4"			

	
Die	folgende	Abbildung	ist	(mit	Anpassungen	an	dieses	Skriptum)	dem	Buch	"Spezielle	Relativitätstheorie	für	
Studienanfänger"	von	Jürgen	Freund	entnommen	(	vdf	Hochschulverlag	Zürich	2004	).	Sie	zeigt	wie	eine	im	System	S		
isotrope	Strahlung	einen	schnellen	Beobachter	im	System	S'	konzentriert	von	vorne	erreicht,	genau	wie	die	Regen-
tropfen	es	bei	einem	schnellen	Fussgänger	machen:	
	

	
	

Die	Graphik	ist	für		𝑣 = 0.9 · 𝑐		gerechnet.	Die	Strahlung	kommt	für	den	schnellen	Rot	nicht	nur	konzentriert	von	vorne,	
sie	hat	dort	wegen	dem	Doppler-Effekt	auch	eine	erhöhte	Frequenz.	Aus	sichtbarem	Licht	könnte	bei	sehr	grossen	
Geschwindigkeiten	eine	gefährliche	UV-	oder	Röntgenstrahlung	werden.	Und	'hinten'	wird	es	dunkel	...	
	
Die	Spezialfälle	dieser	Frequenzverschiebungen,	den	longitudinalen	und	den	transversalen	Dopplereffekt,	haben	wir	
bereits	behandelt.	Den	allgemeinen	Fall	studieren	wir	der	Vollständigkeit	halber	noch	im	nächsten	Abschnitt.	 	

(22.3)	



23.		Die	allgemeine	Dopplerformel		
	
	
Ein	Sender	S	bewege	sich	gemäss	Skizze	im	Koordinatensystem	des	ruhenden	Empfängers	E	mit	der	Geschwindigkeit	𝑣	.	
Er	sende	(in	seinem	System)	mit	der	Frequenz	𝑓>	.	
	

	
	
Zwei	Effekte	sorgen	dafür,	dass	der	Empfänger	das	Signal	bei	einer	(hier	verminderten)	Frequenz	𝑓& 	empfängt:	
	

a) Die	Zeitdilatation	bewirkt,	dass	der	Oszillator	des	Senders	aus	der	Sicht	des	Empfängers	um	den	
Wurzelausdruck	verlangsamt	schwingt.	Dieser	Effekt	ist	unabhängig	von	der	Richtung	der	Relativ-	
geschwindigkeit.	

b) Die	zunehmende	Entfernung	hat	(aus	der	Sicht	des	Empfängers)	eine	Streckung	der	Wellenlänge	zur		
Folge	gemäss	dem	longitudinalen	Dopplereffekt.	Für	diesen	Anteil	ist	nur	die	Radialgeschwindigkeit	
𝑣¯½¾ 	= 	𝑣 · 𝑐𝑜𝑠	𝜑		verantwortlich.	

	
Wir	können	somit	für	den	Dopplereffekt	im	vorliegenden	allgemeinen	Fall	dieselbe	Rechnung	wie	bei	(1.4)	verwenden,	
wir	brauchen	nur	am	richtigen	Ort	für		𝑣		die	Radialgeschwindigkeit	𝑣¯½¾	einzusetzen:	
	

𝑓& 	= 	 𝑓> ·
𝑐

𝑐 + 𝑣¯½¾
· 𝑟(𝑣) = 	 𝑓> ·

𝑐
𝑐 + 𝑣 · 𝑐𝑜𝑠	𝜑

	 · 1	–	
𝑣"

𝑐"
	= 	 𝑓> ·

1

1 + 𝑣 · 𝑐𝑜𝑠	𝜑𝑐
	 · 1	–	

𝑣"

𝑐"
		

	
Also	

𝒇𝑬 		= 	 𝒇𝑺 ·
(𝒄𝟐	–	𝒗𝟐		

𝒄 + 𝒗 · 𝒄𝒐𝒔	𝝋
		= 		 𝒇𝑺 ·

𝟏
𝜸 · (𝟏 + 𝜷 · 𝒄𝒐𝒔	𝝋)

			

	
	
Andere	Autoren	verwenden	den	Winkel		𝜃	 = 	180° − 𝜑		und	haben	entsprechend	ein	Minuszeichen	im	Nenner.	
	
Noch	eine	kleine	Kontrolle:		
	

• Im	Fall	von		𝜑	 = 	0		entfernt	sich	der	Sender	direkt	vom	Empfänger	entlang	der	Verbindungsstrecke	ES.	Dann	
ist		𝑣¯½¾ 	= 	𝑣		und		𝑐𝑜𝑠	𝜑 = 1	und	wir	sind	im	Spezialfall	des	longitudinalen	Dopplereffekts	nach	(1.4).	
	

• Im	Fall	von	𝜑	 = 	90°		bewegt	sich	der	Sender	quer	zur	Sichtlinie	zum	Empfänger.	Dann	ist	𝑣¯½¾ 	= 	0		und	
	𝑐𝑜𝑠	𝜑 = 0		und	wir	erhalten	die	Formeln	(1.6)	oder	(17.2)	des	transversalen	Dopplereffekts.	

	
	 	

(23.1)	



24.	Vierervektoren,	Dreiervektoren	und	Newtons	zweites	Gesetz	
	
	
Ein	sehr	leistungsvolles	Werkzeug	beim	Lösen	von	Aufgaben	in	der	SRT	sind	Vierervektoren.	Die	zeitliche	und	die	drei	
räumlichen	Koordinaten	eines	Ereignisses	werden	zu	einem	Vektor	mit	vier	Komponenten	zusammengefasst:	
	

𝑋	 = 	 	𝑐 · 𝑡, 𝑥, 𝑦, 𝑧	 = 	 (	𝑐 · 𝑡	,			𝑥	)	
	
Die	Zeitkomponente	wird	mit		𝑐		multipliziert	damit	alle	4	Komponenten	dieselben	Einheiten	haben.	𝑋	ist	der	Viererort	
eines	Ereignisses	in	der	4d-Raumzeit.	Die	Vierergeschwindigkeit	gewinnt	man	daraus	aber	nicht	durch	Ableitung	nach	
der	Zeit	𝑡	,	da	die	Zeit	ja	verschieden	schnell	läuft	in	verschiedenen	Bezugssystemen.	Man	leitet	nach	der	Eigenzeit		𝜏		
ab,	der	Zeit	im	aktuellen	Ruhesystem	des	schnellen	Objekts.	Für	die	Vierergeschwindigkeit		𝑉	erhält	man	dabei	
	

𝑉	 = 	
𝑑
𝑑𝜏
	 𝑋 	= 	

𝑑
𝑑𝑡

𝑋 · 	
𝑑𝑡
𝑑𝜏

= 	𝛾 ·
𝑑
𝑑𝑡

𝑋 	= 	𝛾 · (	𝑐	,			𝑣	)	
	
Multipliziert	man	die	Vierergeschwindigkeit	mit	der	Ruhemasse	𝑚2	,	so	erhält	man	den	Viererimpuls		
	

																									𝑃	 = 	𝑚2 · 𝑉	 = 	𝛾 · 𝑚2 · (	𝑐	,			𝑣	) 	= 	
𝐸{|{
𝑐
	,			𝑝	 	

	
Dabei	haben	wir	(4.2)	und	(5.4)	benützt.	Für	den	Impuls		𝑝		ist	hier	also	die	relativistisch	korrigierte	Variante		
einzusetzen	!		
	
Weiter	wird	die	Viererkraft		𝐹		definiert	durch	
	

𝐹	 = 	
𝑑
𝑑𝜏
	 𝑃 	= 	

𝑑
𝑑𝑡

𝑃 · 	
𝑑𝑡
𝑑𝜏

= 	𝛾 ·
𝑑
𝑑𝑡

𝑃 	= 	𝛾 · (	
1
𝑐
·
𝑑𝐸{|{
𝑑𝑡

	,			
𝑑𝑝
𝑑𝑡
	) 	= 	𝛾 · (	

1
𝑐
· 𝑓 · 𝑣,			𝑓	)	

	
wo		𝑓		für	den	traditionellen	oder	bisherigen	3d-Kraftvektor	steht.		
	
Wir	arbeiten	hier	nicht	mit	Vierervektoren,	wir	möchten	nur	untersuchen,	welche	Beziehungen	zwischen	3d-Vektoren	
in	der	SRT	weiterhin	gültig	bleiben.	Der	räumliche	Teil	von	(24.2)	zeigt,	dass	in	der	SRT	das	zweite	Axiom	von	Newtons	
Mechanik	für	die	'Dreiervektoren'	scheinbar	unverändert	gültig	bleibt	:	
	

																									𝒇 	= 	
𝒅𝒑
𝒅𝒕

	

	
Die	Anpassung	an	die	SRT	versteckt	sich	in	der	neuen	Definition	des	Impulses.	(24.3)	braucht	nicht	bewiesen		
zu	werden,	das	ist	die	Definition	der	Kraft		𝑓	,	genauso	wie	sie	das	schon	früher	bei	Newton	war.		
	
Die	Gleichung	für	die	Leistung	gilt	weiterhin	ohne	jede	Anpassung,	wie	man	der	zeitlichen	Komponente	von		
(24.2)	entnehmen	kann	:	
	

					
𝑑𝐸
𝑑𝑡
	= 	 𝑓 · 𝑣 	= 	 𝑓 ·

𝑑𝑥
𝑑𝑡
																oder															𝑑𝐸	 = 		 𝑓 · 𝑑𝑥		

	
Die	rechte	Seite	von	(24.4)	ist	ja	nichts	anderes	als	die	Definition	der	Energie	als	gespeicherte	Arbeit.	
	
Im	Abschnitt	5	haben	wir	(24.3)	und	(24.4)	zur	Berechnung	der	kinetischen	Energie	bereits	eingesetzt:	
	

𝒅𝑬	 = 	𝒇 · 𝒗 	 · 𝒅𝒕	 = 	
𝑑𝑝
𝑑𝑡
	 · 𝑣 	 · 𝑑𝑡	 = 	

𝑑𝑝
𝑑𝑣
	 · 	
𝑑𝑣
𝑑𝑡
	 · 𝑣 	 · 𝑑𝑡		 = 	

𝒅𝒑
𝒅𝒗

	 · 𝒗 	 · 𝒅𝒗			
	
Das	Resultat	dieser	Rechnung,	also	(5.2),	hat	im	Abschnitt	19	eine	unabhängige	Bestätigung	gefunden.	
	

(24.3)	

(24.2)	

(24.4)	

(24.1)	

(24.5)	



Gehen	wir	noch	einen	Schritt	weiter:	Die	Viererbeschleunigung		𝐴		ist	definiert	durch	
	

𝐴	 = 	
𝑑
𝑑𝜏
	 𝑉 	

	
Aufgund	dieser	Definition	ist	die	Beziehung		𝐹 = 𝑚2 · 𝐴		in	der	SRT	universell	gültig!	Es	ist	ja	
	

	𝐹	 = 	
𝑑
𝑑𝜏
	 𝑃 	= 	

𝑑
𝑑𝜏
	 𝑚2 · 𝑉 	= 	𝑚2 ·

𝑑
𝑑𝜏
	 𝑉 	= 𝑚2 · 𝐴	

	
Die	Darstellung	der	Viererbeschleunigung		𝐴		durch	Dreiervektoren	ist	ein	bisschen	kompliziert.	Die	Rechnung	zeigt,	dass	
gilt	
	

														𝐴	 = 	
𝑑
𝑑𝜏
	 𝑉 	= 		 𝛾} · 𝑐r" · 𝑣 · 𝑎 · (	𝑐	,			𝑣	) 		+ 		𝛾" · (	0	,			𝑎	)		

	
	
Aus		𝐹 = 𝑚2 · 𝐴		erhalten	wir	mit	(24.2)	und	(24.6)	
	

																		𝛾 · (	
1
𝑐
· 𝑓 · 𝑣,			𝑓	) 	= 	𝑚2 · 	𝛾} · 𝑐r" · 𝑣 · 𝑎 · (	𝑐	,			𝑣	) 		+ 		𝑚2 · 𝛾" · (	0	,			𝑎	)			

	
In	der	SRT	braucht	die	Dreierkraft	𝑓		also	nicht	mehr	parallel	zu	sein	zur	Dreierbeschleunigung	𝑎		!		
	
Der	komplizierte	erste	Summand	auf	der	rechten	Seite	von	(24.6)	und	(24.7)	verschwindet	wenn	der	Beschleunigungs-
vektor	senkrecht	steht	auf	dem	Vektor	der	Geschwindigkeit,	wie	es	zum	Beispiel	bei	der	Lorentz-Kraft	immer	der	Fall	ist.	
Dann	reduziert	sich	(24.7)	zu	
	

𝛾 · (	
1
𝑐
· 𝑓 · 𝑣,			𝑓	) 	= 	𝑚2 · 𝛾" · (	0	,			𝑎	)	

	
und	wir	haben		𝑓 	= 	𝛾 · 	𝑚2 · 𝑎	.	Um	1905	hat	man	in	dieser	Situation	noch	von	der	'transversalen	Masse'		𝛾 · 	𝑚2		
gesprochen.		
	
Sind		𝑣		und		𝑎		parallel	zueinander,	erhält	man	aus	(24.2)	und	(5.1)	direkt	
	

𝑓 	= 	
𝑑𝑝
𝑑𝑡
	= 	

𝑑𝑝
𝑑𝑣

·
𝑑𝑣
𝑑𝑡
	= 	

𝑑𝑝
𝑑𝑣

·
𝑑𝑣
𝑑𝑡
	= 	 𝛾Å · 𝑚2 · 𝑎	

	
Man	kann	diesen	Zusammenhang	natürlich	auch	aus	(24.7)	ableiten.	Die	Grösse		𝛾Å · 𝑚2		hat	man	um	1905	mit	
'longitudinaler	Masse'	bezeichnet.		
	
	
In	modernen	Publikationen	zur	SRT	wird	mit	der	Masse	eines	Objekts	ausschliesslich	seine	Ruhemasse		𝑚2		bezeichnet.	
Ich	erlaube	mir	aber	weiterhin	von	der	'dynamischen	Masse'			𝛾 · 	𝑚2		zu	sprechen,	weil	diese	immerhin	eine	
Erhaltungsgrösse	ist.	Sie	ist	auch	proportional	zur	Gesamtenergie	und	damit	zur	Trägheit	des	betrachteten	Objekts.	Die	
Ruhemasse		𝑚2		hingegen	ist	eine	Invariante,	sie	hat	in	allen	Bezugssystemen	denselben	Wert.	Sie	ist	aber	keine	
Erhaltungsgrösse.	
	
Die	Begriffe	'transversale	Masse'	und	'longitudinale	Masse'	werden	seit	über	100	Jahren	nicht	mehr	benützt.	
	
Eine	recht	ausführliche	Einführung	in	das	Rechnen	mit	Vierervektoren	bietet	die	folgende	Publikation	des	Autors	dieses	
'Schnellen	Pfades'	:		https://www.physastromath.ch/uploads/myPdfs/Relativ/SRT	mit	Vierervektoren.pdf	
	
	
	
	 	

(24.6)	

(24.7)	



25.		Zur	Axiomatik	der	Speziellen	Relativitätstheorie	
	
	
Die	Notwendigkeit	der	SRT	ergab	sich	aus	den	Bemühungen,	das	allgemeine	Relativitätsprinzip	mit	Maxwells	Theorie	
vom	Elektromagnetismus	zu	versöhnen.	In	Maxwells	Theorie	breiten	sich	elektromagnetische	Wellen	im	Vakuum	
unabhängig	von	der	Geschwindigkeit	des	Senders	in	jedem	Inertialsystem	mit	derselben	konstanten	Geschwindigkeit	
aus.	Dies	ist	mit	Newtons	Mechanik	und	seinen	Vorstellungen	einer	Absoluten	Zeit	und	eines	Absoluten	Raumes	nicht	
vereinbar.	Lorentz	hat	versucht	mit	einer	Längenkontraktion	und	der	zusätzlichen	Annahme	einer	Lokalzeit	Maxwells	
Theorie	mit	der	Newton'schen	Mechanik	zu	verbinden.	Er	hat	dabei	bis	1900	schon	einen	grossen	Teil	der	Mathematik	
der	zukünftigen	SRT	entwickelt.	
	
Im	Denken	der	"Äthertheorie"	der	Lichtausbreitung	war	die	Konstanz	von		𝑐		ein	Problem.	Einstein	macht	aus	dem	
Problem	(in	Kenntnis	der	aktuellen	experimentellen	Ergebnisse)	ein	Prinzip	oder	ein	Axiom	und	baut	darauf	eine	neue	
Theorie	auf	!	Im	Frühling	1905	hat	Einstein	erkannt,	dass	der	Kern	des	Problems	bei	Newtons	Absoluter	Zeit	liegt.	Seine	
Analyse	der	Gleichzeitigkeit	von	Ereignissen	führte	zum	Verständnis	der	drei	Grundphänomene	Zeitdilatation,	
Längenkontraktion	und	Desynchronisation	und	der	Formulierung	der	Speziellen	Relativitätstheorie.	Genauso	hat	er	es	
später	bei	der	Allgemeinen	Relativitätstheorie	gemacht:	Das	Problem	war	dort	die	Äquivalenz	von	träger	und	schwerer	
Masse,	über	die	sich	schon	Newton	gewundert	hat.	Einstein	erhebt	das	Problem	zu	einem	Axiom	und	leitet	daraus	(auf	
einem	langen	und	beschwerlichen	Weg)	die	Allgemeine	Relativitätstheorie	ab.	
	
Die	SRT	basiert	also	auf	dem	Axiom	
	
			A1			Die	Vakuums-Lichtgeschwindigkeit	ist	eine	universelle	Naturkonstante.	Sie	ist	unabhängig	vom	Bewegungs-	
											zustand	der	Lichtquelle	oder	des	Beobachters.	
	
Von	den	4	Erhaltungssätzen	der	klassischen	Physik	(	Masse,	Energie,	Impuls,	elektrische	Ladung	)	bleibt	bei	der	
Entwicklung	der	SRT	nur	einer	unberührt,	nämlich	der	Erhaltungssatz	für	die	elektrische	Ladung.	Die	Erhaltungssätze	für	
Masse	und	Energie	verschmelzen	zu	einem	einzigen	Erhaltungssatz,	der	wahlweise	für	die	dynamische	Masse	oder	die	
Gesamtenergie	formuliert	werden	kann,	wobei	bei	den	Energien	auch	die	Ruheenergie	der	beteiligten	Körper	
berücksichtigt	werden	muss.	Auch	der	Erhaltungssatz	für	den	Gesamtimpuls	bleibt	nicht	ganz	verschont,	indem	der	
Impulsbegriff	selber	eine	Korrektur	erfährt.		
	
Der	Abschnitt	18	zeigt,	dass	die	Definitionen	der	'dynamischen	Masse'	und	des	'SRT	Impulses'	zwingend	aus	der	Zeit-
dilatation	folgen	und	keinen	Erhaltungssatz	voraussetzen.	
Der	Abschnitt	19	zeigt,	dass	die	Erhaltung	der	'dynamischen	Masse'	eine	Folge	der	Impulserhaltung	ist.		
Und	im	Abschnitt	4	wird	gezeigt,	dass	die	Definitionen	der	'dynamischen	Masse'	und	des	'STR	Impulses'	allein	schon	
daraus	folgen,	dass	man	annimmt,	dass	eine	Geschwindigkeitsabhängigkeit	der	Masse	existiert,	welche	mit	den	
Erhaltungssätzen	für	Masse	und	Impuls	kompatibel	ist.	
	
Bemerkenswert	ist	noch,	dass	alle	drei	Gesetze	von	Newton	gültig	bleiben	!	Das	erste	brauchen	wir	nicht	zu	beachten,	
es	ist	ja	nur	ein	Spezialfall	des	zweiten.	Das	zweite	Gesetz	lautet	in	Newtons	ursprünglicher	Formulierung			𝐹 = 𝑑𝑝/𝑑𝑡	.	
Das	gilt	in	der	SRT	weiterhin,	allerdings	mit	einer	etwas	'nachjustierten'	Definition	des	Impulses.	Und	Newtons	drittes	
Gesetz	(	'actio	=	reactio'	)	ist	als	tiefe	Erkenntnis	sowieso	erhaben	über	die	Spitzfindigkeiten	jeder	speziellen	Theorie.	
	
Setzt	man	die	Gleichung		𝐸 = 𝑝 · 𝑐		für	eine	Portion	an	elektromagnetischer	Strahlung	voraus,	kann	man	aus	dem	
Impulserhaltungssatz	(Abschnitte	10	bis	12)	oder	dem	Energieerhaltungssatz	(Abschnitt	13)		die	Äquivalenz	von	Masse	
und	Energie	ableiten	und	die	ganze	SRT	darauf	aufbauen.	Dann	kann	man	das	Axiom	A1	leicht	abschwächen,	es	genügt	
zu	verlangen,	dass	die	Lichtgeschwindigkeit	an	ruhenden	Quellen	gemessen	in	allen	Bezugssystemen	dieselbe	sei.	
A1		ist	also	äquivalent	zu	A2	&	A3,	wenn	diese	etwa	so	lauten:	
	
			A2			Die	Vakuums-Lichtgeschwindigkeit	an	einer	ruhenden	Quelle	gemessen	ist	eine	universelle	Naturkonstante.		
	
			A3			Energie	und	Impuls	von	elektromagnetischer	Strahlung	sind	durch	die	Gleichung		𝐸 = 𝑝 · 𝑐		gekoppelt.	
	
	


