Ein neuer Pfad zu den wesentlichen Ergebnissen der SRT

Auf einem neuen und sehr schnellen Pfad werden auf den ersten 6 Seiten die wesentlichen Ergebnisse der SRT exakt
hergeleitet. Die Darstellung kommt ohne Lorentz-Transformationen, ohne experimentelle Bestatigungen, ohne
Anwendungsbeispiele, ohne Raumzeit-Diagramme und ohne Aufgaben daher, daflir prasentiert sie noch die 'halbe
Geschwindigkeit'. Fiir Illustrationen und Beispiele (also das Fleisch am Knochen) wird oft auf die Webseite
"www.relativity.li" verwiesen, wo mein Buch "Epstein erklart Einstein" (kurz EEE) vollstandig publiziert ist.

Im Abschnitt 20, sozusagen post festum, werden dann doch noch die Lorentz-Transformationen hergeleitet, damit die
selten verwendeten allgemeinen Formeln der Addition von Geschwindigkeiten, der Aberration und des Dopplereffekts
bestimmt werden kénnen. Den Abschluss bildet ein Abschnitt zur Frage, was von Newtons Gesetzen (ibrigbleibt, sowie
ein kurzer Abschnitt zu axiomatischen Fragen.

Was hier noch fehlt ist wie so oft der wichtige Teil zu den Transformationen der elektrischen und magnetischen Felder.
Diese Liicke ist jetzt aber mit der folgenden Publikation geschlossen:
https://www.physastromath.ch/uploads/myPdfs/Relativ/SRT mit Vierervektoren.pdf
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1. Zeitdilatation und Dopplereffekt

In der Akustik muss man fiir die Berechnung der Frequenzdanderung zwei Falle unterscheiden:

a) der Sender ruht im Medium, der Empfanger entfernt sich mit der Geschwindigkeit v von der Quelle. Die

entsprechende Formel ist dann
c—v
(1.1)

fe = fs-

c

b) der Empfanger ruht im Medium, der Sender entfernt sich mit der Geschwindigkeit v vom Empfanger. Die
Frequenzanderung folgt dann der Formel

Cc

fe = fs- (1.2)

ct+v

Wir setzen nun fiir das Licht zusatzlich voraus, dass die Ausbreitungsgeschwindigkeit ¢ des Signals in allen
Inertialsystemen dieselbe sei und dass diese unabhangig sei vom Bewegungszustand des Senders, ganz so wie es
die Wellengleichung von Maxwell fordert. Fiir Licht soll es also, im Unterschied zum Schall, kein ausgezeichnetes
Bezugssystem geben, in welchem das Tragermedium des Signals ruht.

Wenn es kein ausgezeichnetes Bezugssystem mehr gibt und nur noch eine Relativgeschwindigkeit gemessen werden
kann, missen die beiden Falle aber dasselbe Ergebnis liefern! Es muss also irgendetwas mit den Frequenzen geschehen
wenn Sender und Empfanger bewegt sind gegeneinander. Wenn sich Frequenzen dndern sollen muss aber zwingend
etwas mit der Zeit geschehen, das ist die einzige Grésse, welche bei konstanter Signalgeschwindigkeit die Anzahl der
gezahlten Schwingungen beeinflussen kann! Wir nehmen also an, dass es einen von der Relativgeschwindigkeit v
abhéangigen Faktor r(v) gibt sodass gilt

At, = Aty -r(v)

At,, ist dabei ein Zeitintervall (der zeitliche Abstand zweier Ereignisse) im 'schnellen' System, At, das entsprechende
Zeitintervall im Ruhesystem gemessen. r(v) kann nicht 1 sein fur v # 0, da sich die beiden Formeln weiter oben
unterscheiden. Die Zeit kann also nicht mehr gleich schnell laufen in zwei zueinander bewegten Bezugssystemen, wir
missen uns von Newtons Absoluter Zeit verabschieden!

Uber die Funktion r(v) machen wir keine weiteren Voraussetzungen. Nur zugunsten der einfacheren Sprechweise
nehmen wir mal an, dass r(v) kleiner sei als 1 fiir v # 0 (man kann den ganzen Text auch fiir den anderen Fall
formulieren und kommt zu demselben Ergebnis).

Im Fall a) bewegt sich der Empfanger, dann tickt also seine Uhr um den Faktor r(v) langsamer. Er wird entsprechend
eine gréssere Frequenz messen, in seinen langen Sekunden treffen mehr Schwingungen ein. (1.1) muss somit korrigiert
werden zu
c—v 1
fe=f- ¢ r()

Im Fall b) ruht der Empfanger, und die Uhr des schnellen Senders tickt verlangsamt. Dadurch sinkt aus der Sicht des
Empfangers seine Sendefrequenz, und wir missen (1.2) korrigieren zu

fe = fs r(v)

c+v
Wenn sich die beiden Falle nicht mehr unterscheiden diirfen ergibt sich daraus die Gleichung

c—v 1 c

r(v)

c -r(v) T C+v



oder
(c-v) (c+v) _cz—vz v?

2
rw)” = c c c? c?

und damit

(1.3)

Das liefert den bekannten Faktor fir die Zeitdilatation. Die negative Losung ware allenfalls interessant fiir eine Science-
Fiction-Geschichte ...

Damit finden wir nun sofort die korrekte Formel fiir den longitudinalen Dopplereffekt. Setzen wir den Wurzelausdruck
fir r(v) in die korrigierten Dopplerformeln ein erhalten wir in beiden Féllen dasselbe Ergebnis:

fe=fs: +v'7‘(”)=fs‘c+v fs- ctv (1.4)
_ c—v 1 _ c—v _ c-v
fE fS' c %—fs c (C‘U)‘(C+U) _fS' c+uv (15)

Dabei steht v fiir die Geschwindigkeit, mit der sich die beiden voneinander entfernen.

Das Relativititsprinzip, also die Forderung, dass es kein ausgezeichnetes "Athersystem" geben soll, liefert zusammen
mit der zuséatzlichen Annahme, dass die Ausbreitungsgeschwindigkeit des Signals unabhangig sein soll vom Bewegungs-
zustand des Senders, sofort die Formeln fir die Zeitdilatation und den longitudinalen Dopplereffekt.

Graphen zu den drei Doppler-Formeln und eine schone Anwendung des optischen Dopplereffekts findet man hier:
https://www.relativity.li/de/epstein/lesen/d0_de/d6 de

Beachten Sie, dass dort die Relativgeschwindigkeit v positiv eingesetzt wird bei Annéherung. Die Vorzeichen sind
daher gerade anders herum gesetzt.

Die Zeitdilatation hat einen weiteren unmittelbaren Effekt. Bewegt sich ein Sender senkrecht zur direkten Sichtlinie zum
Empfanger so dndert sich die Distanz der beiden ja nicht. Trotzdem gibt es einen Doppler-Effekt, da der Oszillator im
Sender aus der Sicht des Empfangers verlangsamt schwingt. Man nennt diesen rein relativistischen Effekt den
transversalen Dopplereffekt im Unterschied zum longitudinalen Dopplereffekt, den wir oben behandelt haben. Fir die
Frequenzverminderung gilt hier

(1.6)

Der Effekt ist viel schwieriger nachzuweisen als der longitudinale Dopplereffekt, da er vom Quadrat von v/c abhangt
und nicht von v/c selber.

Formeln fur den allgemeinen Fall werden im Abschnitt 23 hergeleitet.



2. Die Addition von parallelen Geschwindigkeiten

Aus der relativistischen Dopplerformel gewinnen wir jetzt die Formel fiir die Addition von parallelen Geschwindig-
keiten. Ganz dhnlich findet man das schon bei Hermann Bondi ("Relativity and Common Sense", 1962, neu aufgelegt bei
Dover Publications 1980) und im schéonen Buch "It's About Time" von N. David Mermin (Princeton University Press,
2005).

Es bewege sich B in positiver xa-Richtung von A mit der Geschwindigkeit v relativ zu A, und es bewege sich C in positiver
xg-Richtung von B mit der Geschwindigkeit u relativ zu B. Die beiden x-Richtungen sollen wie {blich zusammenfallen.

C sende nun Strahlung der Frequenz f¢ in Richtung von B und damit auch von A. Nach dem letzten Abschnitt empfiangt
B diese Strahlung bei einer Frequenz von

c—-u

fs = “fe

ct+u

Mit dieser Frequenz rauscht die Strahlung an B vorbei und weiter zu A, der entsprechend die Frequenz misst

f cC—- vV f cC—-UV c—Uu f
A7 Je+v BT e+ c+u ‘¢

Fiir die gesuchte Geschwindigkeit z von C relativ zu A gilt andererseits

c—-Z

fa = “fe

c+z

Setzt man die beiden Terme fiir f, einander gleich so erhdlt man nach einigen elementaren Umformungen

v+u

zZ=—— (2.1)
1+ vczu

Sind v und u klein gegeniiber der Lichtgeschwindigkeit ¢ , so unterscheidet sich das Ergebnis praktisch nicht von der
Geschwindigkeitsaddition nach Newton und Galilei.

Setzt man fir eine oder auch fiir beide der Geschwindigkeiten u und v die Lichtgeschwindigkeit ¢ ein, so liefert die
Formel wieder diese Lichtgeschwindigkeit c . Die Rechnung zeigt somit auch, dass die getroffenen Annahmen nicht
schon in sich widersprichlich sind.



3. Die 'halbe Geschwindigkeit' und die 'doppelte Geschwindigkeit' in der SRT

Wir fragen uns jetzt, fiir welche Geschwindigkeit w gilt

w+ w

V = — 0
1+ 27
C

Nach (2.1) ware w dann die 'halbe Geschwindigkeit' von v in der SRT, und v ware die 'doppelte Geschwindigkeit' von
w . Lost man die Gleichung nach w auf so erhalt man nach elementaren Umformungen

v
W= —FT—— (3.1)

vz
1+ 1_C_2

Fur kleine Geschwindigkeiten v ist der Wurzelterm praktisch 1 und wir erhalten fiir w praktisch v /2, also das
klassische Ergebnis. Da der Wurzelterm immer kleiner ist als 1 ist w also immer ein bisschen gréosser als v / 2 . Erreicht
v fast die Lichtgeschwindigkeit so ist w fast gleich gross wie v !

Jerzy Kocik hat im American Journal of Physics (Vol. 80, Nr. 8, p. 737f) gezeigt, wie man Geschwindigkeiten in der SRT
ganz einfach mit Zirkel und Lineal addieren kann. Sein Artikel hat meinen Freund Alfred Hepp und mich zu einer
Ausarbeitung angeregt, in welcher die 'halbe Geschwindigkeit' eine wichtige Rolle einnimmt. Sie kdnnen diese Arbeit
hier herunterladen: https://www.physastromath.ch/uploads/myPdfs/Relativ/Relativ_06_ de.pdf

Zu zwei mit v relativ zueinander bewegten Bezugssystemen S und S' gibt es immer ein 'mittleres' Bezugssystem T in
welchem sich die Situation vollkommen symmetrisch darstellt. S bewegt sich fir T mit —w in die eine Richtung, und
S' bewegt sich fir T mit w in die Gegenrichtung. Dabeiist w die 'halbe Geschwindigkeit' von v .

Die Kenntnis dieser 'halben Geschwindigkeit' ist oft niitzlich. Wir werden sie im nachsten Abschnitt einsetzen um den
relativistischen Ausdruck fiir den Impuls herzuleiten. Ohne diese halbe Geschwindigkeit waren die erforderlichen
algebraischen Umformungen mithsamer. Und im Abschnitt 8 zeigen wir noch, dass man die kinetische Energie erhalt
wenn man den Impuls mit der 'halben Geschwindigkeit' multipliziert.

Mir sind keine Autoren bekannt welche mit dieser 'halben Geschwindigkeit' gearbeitet haben.



4. Der vollkommen inelastische Stoss

In einem System S sollen sich zwei identische Korper vollkommen symmetrisch aufeinander zu bewegen. Wir lassen die
Moglichkeit zu (aber wir verlangen es nicht !), dass ihre Massen von der Geschwindigkeit abhdngen, und schreiben fiir
die beiden Impulse daher

m, - w respektive my, - (—w)

Der gesamte Impuls ist null, daher haben wir nach einem vollkommen inelastischen Stoss eine einzige Masse M, , die
im System S ruht.

Nun betrachten wir diese Kollision aus einem System S', welches sich mit —w relativ zu S bewegt. In diesem System ist
der zweite Korper in Ruhe, wahrend sich der erste mit der 'doppelten Geschwindigkeit' v bewegt. Nach der Kollision
bewegt sich der entstandene Kérper im System von S' mit der Geschwindigkeit w . Wir schreiben nun die Gleichungen
fr die Impulserhaltung und die Massenerhaltung im System S' auf. Das sind ja, nebst dem Erhaltungssatz fiir die
elektrische Ladung, die grundlegenden Glaubenssatze der ganzen Physik:

I m,'v = M, *w
I1 m, + my = M,

Wir eliminieren in der ersten Gleichung mithilfe der zweiten M,, und setzen fiir die 'halbe Geschwindigkeit' w das
Ergebnis des letzten Abschnittes ein:

v

VZ
1+ 1_C_2

m, v = (m, +mg)-w = (my, + my) -

Nach der Division durch v erhalt man schnell

m, = —— (4.1)

Das ist die Definition der 'dynamischen Masse' m,, . Der relativistische Impuls ist entsprechend definiert durch

mo'v

p=m, v = — (4.2)
v
1-=

Nur mit diesen Definitionen lassen sich die Gleichungen | und Il erfillen! Der Erhaltungssatz fiir die Massen gilt also nur
flr die 'dynamischen Massen', und auch die Definition des Impulses erfahrt eine Korrektur.

Aus w = v/2 wirde aus den beiden Gleichungen m,, = m, und M,, = My, = 2-m, folgen. Die 'kleine' Korrektur
der Additionsformel fiir Geschwindigkeiten hat also sofort tiefgreifende Konsequenzen.

Diese Herleitung hat Max Born in seinem Buch "Die Relativitdtstheorie Einsteins" (erste Auflage 1920) vorgestellt,
allerdings in viel komplizierterer Form (p. 233ff). Mit unserer 'halben Geschwindigkeit' verschwindet der ganze
algebraische Aufwand.

Born prasentiert in jenem Buch auch schon eine Herleitung der relativistischen Impulsformel, welche auf die
Erhaltungssatze flr die Masse und den Impuls verzichten kann (unser Abschnitt 18).



5. Gesamtenergie, Kinetische Energie und Ruheenergie

Wir bestimmen nun wie Ublich den relativistischen Ausdruck fir die kinetische Energie, d.h. wir berechnen den Aufwand
um einen Korper aus dem Ruhezustand auf eine bestimmte Geschwindigkeit v.,qs zu beschleunigen. Aus

d
dE = F- ds und F = d—l; ( Newtons 'lex secunda’)
erhélt man
dp dp dv dp ds dp
dE = —+ds = ——+'ds = ——+dv = —v-d
ac T wa P T A T w N
und somit
Vend dp
Ekin = j;) E A dv
Die Formel (4.2) im letzten Abschnitt liefert
3
dp v\ 2
v = Mo’ 1-0—2 (5.1)
und das Integral ergibt dann zusammen mit (4.1)
2 1 2 2
Epin =my ¢ | —m———= -1|=m,,"C my-c- = Am-c (5.2)
1- vendz
c2

Zu einer verrichteten Arbeit oder einer Energiezufuhr gehort also eine Massenzunahme nach der Formel
AW = AE = Am - c? (5.3)

Energie und Masse sind ineinander umwandelbar. Der Ruhemasse m, entspricht schon eine Ruheenergie E, vom
Betrag m, - c? , und es gilt

_ _ 2 _ m, 2
Etot = EO + Ekin =m,- -c° = —2 C (54)
v
-

Der Energieerhaltungssatz und der Massenerhaltungssatz verschmelzen zu einem einzigen Erhaltungssatz, der
wahlweise als Energieerhaltungssatz (unter Einschluss der Ruheenergien) oder als Massenerhaltungssatz (fur die
'dynamischen Massen') formuliert werden kann.

Beispiele fiir Prozesse, bei denen Masse in Energie umgewandelt wird oder auch umgekehrt gibt es viele.
Zugehorige Abschnitte in EEE :

https://www.relativity.li/de/epstein/lesen/f0_de/f3 de
https://www.relativity.li/de/epstein/lesen/f0_de/f4 de
https://www.relativity.li/de/epstein/lesen/f0_de/f5 de




6. Gesamtenergie, Impuls und der Satz des Pythagoras

Berechnet man die Differenz der quadrierten Gesamtenergie und der quadrierten Ruheenergie, so erhdlt man ein
erstaunliches Resultat:

2. .4
my“-c 1
2 2 _ 0 4 _ 4 —
Eior” — Ey° = = — My~ ¢c” = my=-¢ - —1]=
1-2 1-2
c? c?
2
1 - 1_17 v? 2., ,,2
2., .4 z 4 c? me” v 2 )
= my“-c 5 = my“-c*- s | = 5 "C° =p°-c
v 1 v 1 v
1__ R R
c? c? c?
Es gilt also
2 2.2 _ 2
Ey” + p®-c® = Eyo (6.1)

Die Ruheenergie, der mit der Lichtgeschwindigkeit multiplizierte Impuls und die Gesamtenergie bilden also die Seiten
eines rechtwinkligen Dreiecks. Energie und Impuls sind dhnlich verkniipft wie Zeit und Raum (in der Darstellung mit
Epstein-Diagrammen ist das selbstverstdndlich, siehe https://www.relativity.li/de/epstein/lesen/e0_de/e5 de ).

=
pie
Fir den Winkel ¢ in diesem Dreieck gilt
. _pc_myrvec v 62
sin(@) = p— = = = = b (62)
und
1
cos(p) = = — (6.3)
Y

Damit sind auch die traditionellen Variablen  und y definiert.



7. Gesamtenergie, Impuls und die ganze Geschwindigkeit

Eine weitere niitzliche Beziehung finden wir, wenn wir die Formel (5.4) fir die Gesamtenergie durch die Formel (4.2) fiir
den Impuls dividieren oder einfach feststellen, dass gilt

Eror _ D
2 Y Ty
Es gilt offenbar
| ¢t = Eior v (7.1)

Auch anhand der Figur im Abschnitt 6 ldsst sich herauslesen dass gilt

p-c ) v
= sing = —
Etot

Mit (7.1) lasst sich zum Beispiel die Geschwindigkeit des Schwerpunktsystems einiger Teilchen berechnen.

8. Kinetische Energie, Impuls und die halbe Geschwindigkeit

Wir gehen von der Beziehung (6.1) zwischen Gesamtenergie, Ruheenergie und Impuls aus :

my2-ct = me?-ct + m,? v?-c?
Wir dividieren durch c¢? und stellen ein bisschen um:
(mvz - mOZ) ¢t = mv2 - v?

Nach der Division durch (m, + m,) erhalten wir links nach (5.4) den Ausdruck fir die kinetische Energie:

2
_ A S S R S e cp -
(m, —mg)-c* = v ve = v:i = m, v =Mm, v-w

M ¥ Lt 5 1+ 1-%
v CZ

wo w fir die 'halbe Geschwindigkeit' von v steht (siehe Abschnitt 3). Wir erhalten damit ein Ergebnis, welches
gleichermassen in der 'klassischen' Physik gilt wie auch in der SRT:

Eyyn = my-v-w=p-w (8.1)

In der klassischen Physik haben wir ja ebenfalls

Epin =

N
3
S
I
3
<
N <
Il
S
S

Es ist nicht offensichtlich, dass sich die relativistische Formel flr die kinetische Energie fiir kleine Geschwindigkeiten
dem klassischen Ausdruck annahert. Sowohl beim Impuls als auch bei der halben Geschwindigkeit ist das aber klar,
somit muss es auch fiir deren Produkt gelten. Mir ist kein Buch bekannt in welchem (8.1) vorgestellt wird.



9. Impuls und Energie von Lichtteilchen

Um ein Teilchen mit einer nicht verschwindenden Ruhemasse auf Lichtgeschwindigkeit zu beschleunigen, braucht es
nach (5.2) unendlich viel Energie. Lichtteilchen oder Photonen kénnen daher keine Ruhemasse haben, sie sind ja
obligatorisch mit Lichtgeschwindigkeit unterwegs. Sie haben aber Energie und Impuls, und fiir my = 0 erhalten wir aus
der Gleichung (6.1)

0 +p*-c? = By’
oder

E =Ei = Egin =P C (9.1)

Diese Formel erhalten wir auch wenn wir in (7.1) fir v die Lichtgeschwindigkeit ¢ einsetzen oder wenn wir in (8.1) fur
die 'halbe Geschwindigkeit' von ¢ ebenfalls ¢ einsetzen.

Nehmen wir Planck's Formel E = h - f hinzu erhalten wir die wichtigen Beziehungen

E=h-f=pc (9.2)
und

pE_RS_R (9.3)

Strahlung einer bestimmten Frequenz f besteht also aus Teilchen der Energie h - f, und jedem dieser Teilchen kommt
der Impuls p = h - f / ¢ zu. Auf dieser Grundlage konnte Einstein 1905 alle Phdnomene des dusseren Photoeffekts
erklaren, was ihm spater den Nobelpreis einbrachte.

Dass Licht einen Strahlungsdruck ausiibt hat Poynting schon 1884 aus den Gleichungen von Maxwell abgeleitet. Eine
schone lllustration davon ist der Schweif von Kometen: Dieser zeigt immer von der Sonne weg, weil der Druck der
Sonnenstrahlung die freigesetzten lonen und Staubteilchen von der Sonne weg beschleunigt. Wenn sich der Komet
wieder von der Sonne entfernt fliegt er also mit dem Schweif voran ! Auf dem folgenden Bild des Kometen Hale-Bopp
sieht man schon die beiden Schweife: Den lonenschweif und den Schweif der schwereren Staubteilchen, die sich
weniger leicht beschleunigen lassen:

http://astronomy.swin.edu.au/sao/imagegallery/Hale-Bopp.jpg



10. E = m - ¢? aus dem Impulserhaltungssatzund E =p - ¢

Figur a) zeigt einen Korper der Ruhemasse m, auf den sich zwei Energiequanten symmetrisch zubewegen. Jeder Quant
transportiert den Impuls p und die Energie E = p - ¢ . Nach der Absorption bleibt der Kérper aus Symmetriegriinden
in Ruhe, seine Energie hat um AE = 2 - E zugenommen. Seine Masse sei nachher m, :

a) before L) befsce
y a7
mz\f/\/’ Q:vﬁvv‘ r’.‘_"e:ﬁ_f_ .mgl‘:_

my LLATY

N

v
b

afliads aflr wards ?
u

my My

Figur b) zeigt denselben Vorgang in einem Bezugsystem, welches sich gegenliber dem Ruhesystem des Kérpers mit der
beliebig kleinen Geschwindigkeit u nach unten bewegt. Der Kérper hat vor und nach der Absorption die Geschwindig-
keit u , und die beiden Quanten, die sich auch in diesem Bezugssystem mit c bewegen missen, fallen jetzt unter einem
Winkel a ein fur welchen gilt sin(x) = u/c . Die Impulse p’ und ¢’ mégen dabei einen leicht anderen Betrag haben
alsp .

Die Impulserhaltung fir die Komponenten in der Richtung von u bedeutet jetzt

u
Y MU =y, my-u + 2:p-sin(x) =y, -my-u + 2-p’-;
Nach der Division durch u (oder durch y,, - u ) haben wir

m; = my + 2-p—-—
C Yu

Das gilt fur alle (noch so kleinen) Geschwindigkeiten u . Damit gilt die Gleichung auch im Grenzfall fir u = 0. Der Limes
von p’ fir u gegen nullist aber p (und derjenige fiir y,, ist 1), und wir erhalten damit auf jeden Fall

p_ ., E_AE
c 2 ¢2

oder

Am = — (10.1)

Fiir sehr kleine Geschwindigkeiten kann man die rot gedruckten Textteile in sehr guter Ndherung auch weglassen.

Diese sehr schéne Herleitung hat Albert Einstein 1946 gefunden. Sie ist der 14. Beitrag in der Essaysammlung "Aus
meinen spaten Jahren" ( Ullstein th 34721, 1993* ).



11. E = m - ¢? aus dem Impulserhaltungssatzund E =p - ¢

Figur a) zeigt zwei Teilchen derselben Ruhemasse m die sich mit den Geschwindigkeiten v und —v aufeinander zu
bewegen. Der Gesamtimpuls ist null, der Schwerpunkt O dieses Systems befindet sich in Ruhe. Er liegt in der Mitte
zwischen den beiden Teilchen :

Mo | v oy =)V
a\ ——@—‘P 'O ;‘_@__
ma 0 4 » #or
L) AL + @ +
2 0 L~ [ ad
X
My '0 leo
) ® = 7
2 () e-y

Figur b) zeigt den Zustand des Systems zum Zeitpunkt At = [/c nachdem das linke Teilchen seinen Impuls in der Form
eines ultrakurzen Lichtblitzes abgegeben hat. Der Lichtblitz befindet sich bei O, das linke Teilchen ruht jetzt im Abstand
[ von O und hat die Masse m;. Das rechte Teilchen befindet sich in jenem Moment im Abstand

l—x =1—-At-v = l—é'v = l'(l_;)

vom Schwerpunkt O des Gesamtsystems. Die Gleichung fiir den Schwerpunkt lautet somit

Loy =y oy @=2) = yomyel(1-2)

Die dynamische Masse des Blitzes geht nicht in die Rechnung ein, weil sie sich ja gerade am Ort O befindet !
Wir dividieren durch [ und benitzen die Gleichung E =p-c =y -my-v-c underhalten

v p
m =y -my—y My-—=y My —— = yY-Mmy — —
1 Yy -my — Y Mg c Yy -my c Y -mg 2
Die Abgabe der Energie E flhrt zu einer Verminderung der dynamischen Masse um den Betrag CE—Z 1l (11.1)

In der zeitlichen Umkehr bedeutet das, dass die Zufuhr der Energie E zu einer entsprechenden Zunahme der
dynamischen Masse fuihrt! Die Figur c) zeigt den Zustand, nachdem der rechte Kérper den Blitz (und damit dessen
Impuls und Energie) absorbiert hat. Er ruht, und nach dem eben Gesagten gilt

E

m, =)/-m0+c—2

Damit erhalten wir

E E E AE
mz—m1=(y-m0 +§>—(y-m0——>=2-—=— (11.2)



Zu Beginn hatten die beiden Korper dieselbe Ruhemasse (und dieselbe dynamische Masse). Nach der Impuls- und
Energielbertragung haben die Ruhemassen der beiden Koérper (welche in unserer Anordnung mit den dynamischen
Massen identisch sind) eine Differenz von AE/c? .

Energie und dynamische Masse kdnnen ineinander umgerechnet werden, und der entsprechende Faktor ist das
Quadrat der Lichtgeschwindigkeit:

AE = Am-c (11.3)

Dividiert man den Erhaltungssatz fiir die Energie durch c? so erhélt man den Erhaltungssatz fiir die dynamischen
Massen. Ein Erhaltungssatz fiir die Ruhemassen gilt nicht, es ist ja

E E
my+m, = (y-mo —§>+<y-m0 +c_2> =2-y-my > 2-m,

Die kinetische Energie der beiden Teilchen ist bei diesem Prozess in zwei Schritten in Ruheenergie umgewandelt
worden. Die Gesamtenergie bleibt dabei natirlich erhalten.

Die Idee, die Stabilitat des Schwerpunkts bei einem Austausch von Energie innerhalb eines abgeschlossenen Systems
auszuwerten, stammt urspriinglich auch von Einstein. Er hat dabei einen Kasten verwendet, der die Teilchen nach dem
Energie- und Impulsaustausch wieder zur Ruhe zwingt. Das erfordert eine zusatzliche Diskussion, da es in der SRT ja
keine starren Korper geben kann.

Francesco Cester hat den Kasten endlich weggelassen ("Newton und die Relativitat", Books on Demand 2017). Er
arbeitet dann mit Ndherungen fir sehr kleine Geschwindigkeiten, was natirlich berechtigt ist, wenn man an den
Austausch einiger Photonen denkt. Dabei verschwindet aber auch die wichtige Unterscheidung von Ruhemassen und
dynamischen Massen.

Unsere Darstellung ist also eine Weiterentwicklung von Cesters Ansatz. Sie zeigt nebenbei, dass der Erhaltungssatz fir
die dynamischen Massen aus dem Erhaltungssatz fiir den Impuls folgt.



12. E = m - ¢? aus dem Impulserhaltungssatzund E = h - f

Ein im System S ruhender Kérper der Masse m,, soll gleichzeitig in entgegengesetzte Richtungen je einen Energiequant
vom Betrag h - f aussenden. Nach dieser Emission mag er die Ruhemasse m; haben. Der Kérper verharrt dabei in S
in Ruhe, da sich die Impulse der beiden Quanten aufheben.

Diesen Vorgang betrachten wir nun aus einem Bezugssystem S', welches sich auf der Achse der beiden Lichtquanten
mit der Geschwindigkeit v relativ zu diesem Kérper bewegt. Der Kérper hatin S' vor und nach der Emission der
Quanten die Geschwindigkeit v . Wir schreiben nun mit (9.3) den Impulserhaltungssatz fiir diesen Emissionsprozess im
System S' auf. Dabei miissen wir die Frequenzverschiebungen nach (1.4) beriicksichtigen:

mo‘v

1/"2
Jl'ET

Etwas umgestellt:

Somit, nach Division durch v
Am = 2-h-f/c? = AE/c? (12.1)

Die Ruhemasse des Kérpers nimmt durch die Abstrahlung der Energie AE um den Betrag AE / c? ab.

Zu dieser Rechnung bin ich ebenfalls durch die Lektiire des Buches "Newton und die Relativitdt" von Francesco Cester
(Books on Demand, 2017) angeregt worden.

Cester selber verweist auf einen Artikel von Fritz Rohrlich im American Journal of Physics (Nr. 58 vom April 1990).
Rohrlich rechnet dort ndherungsweise mit der akustischen Dopplerformel (1.1) fiir eine bewegte Lichtquelle. Das ist
nicht falsch, die Relativgeschwindigkeit v darf ja beliebig klein sein. Rohrlich zieht aber wegen der Verwendung von
(1.1) statt (1.4) noch den falschen Schluss, dass die abgestrahlte Energiemenge in beiden Bezugssystemen denselben
Betrag habe. Die exakte Rechnung zeigt hingegen dass gilt AE' = AE -y .

Genau dieses Resultat braucht Einstein in seiner ersten Herleitung der Formel E = m - ¢? . Wir stellen seine
Argumentation im nachsten Abschnitt vor.



13. E = m - ¢? aus dem Energieerhaltungssatzund E = h - f

Einstein hat im Herbst 1905 quasi als Ergdnzung zur Arbeit iber die Relativitdtstheorie einen Artikel nachgereicht mit
dem Titel "Ist die Tragheit eines Kérpers von seinem Energieinhalt abhangig?". Er leitet dort erstmals die Formel

AE = Am - ¢? ab, und zwar aus dem Energieerhaltungssatz. Wir vereinfachen die Darstellung ein bisschen, indem wir
die Richtung der Energieabstrahlung mit der Richtung der Relativbewegung zusammenfallen lassen. Dadurch kénnen
wir fiir die Frequenzanderung die Formel fur den longitudinalen Dopplereffekt verwenden.

Die Situation ist identisch mit derjenigen im Abschnitt 12 : Ein im System S ruhender Kdrper der Masse m, soll
gleichzeitig in entgegengesetzte Richtungen je eine Energiemenge L/2 bei der Frequenz f abstrahlen. Nach dieser
Emission mag er die Ruhemasse m; haben. Der Kérper verharrt dabei in S in Ruhe, da sich die Impulse der beiden
abgestrahlten Energiepakete aufheben (oder aus Symmetriegriinden ...).

Im Ruhesystem des Korpers schreibt sich die Energieerhaltung mit E, = E; + L

Diesen Vorgang betrachten wir nun aus einem Bezugssystem S' welches sich auf der Achse der beiden Strahlungs-
portionen mit der Geschwindigkeit v relativ zu diesem Korper bewegt. Der Korper hat in S' vor und nach der Emission
der Quanten die Geschwindigkeit v , was entscheidend sein wird.

Im System S' missen wir bei der Energiebetrachtung mit (9.2) auch den Dopplereffekt nach (1.4) bericksichtigen:

- j(c+v)+j(c-v) =E1,+£‘<(c+v)+(c—v)>=E1,+L.1_

2 (c—v) (c+v) 2 2 — p2 R 12
Tz

Also gilt

By —Ex) = (Ey—E)) = (B —Eo) = (B —Ep) = L+ | —=—=—1

(Ey" — Ey) ist aber als kinetische Energie K,' des Kdrpers im System S' vor der Emission zu interpretieren, (E;' — E;)
ist entsprechend die kinetische Energie K;' des Kérpers im System S' nach der Emission. Fiir die Differenz dieser
kinetischen Energien gilt also

1172 6

vt 15 v
2 ¢z c*

3
Ky —K,/ =L |——=-1]|=1L-(1 = — . —+ .. (-1
o — K <+ o atg mt o ))

Cc

Die kinetische Energie hat also abgenommen, obwohl die Relativgeschwindigkeit dieselbe geblieben ist !! Die
Abstrahlung der Energie L muss demnach mit einer Massenabnahme verbunden sein. Unter Vernachlassigung der
Glieder héherer Ordnung gilt fiir kleine Geschwindigkeiten v (und v darf bei unserer Betrachtung beliebig klein sein!)
v?
)

oder Am = L/ c?*

N[ =

S (mo—my) v = L-

2 c

Einstein schreibt: "Gibt ein Kérper die Energie L in Form von Strahlung ab, so verkleinert sich seine Masse um L / c2.
Hierbei ist offenbar unwesentlich, dass die dem Kérper entzogene Energie gerade in Energie der Strahlung tibergeht, so
dass wir zu der allgemeineren Folgerung gefiihrt werden: Die Masse eines Korpers ist ein Mass fiir dessen Energie-
inhalt."



14. Die Langenkontraktion

Die Inertialsysteme von "Rot" und "Schwarz" sollen sich mit v respektive — v gegeneinander bewegen. Die Systeme
seien wie immer so ausgerichtet, dass ihre x-Achsen aufeinander liegen und die y-Achsen und z-Achsen parallel sind.

Schwarz markiert nun zwei Punkte A und B auf seiner x-Achse und misst die Linge Ax dieser Strecke mit seinen
Massstdben oder mithilfe einer Uhr in A und eines Spiegels in B. Schwarz stellt zudem fest, dass Rot die Zeit At braucht
um diese Strecke zuriickzulegen. Schwarz kennt dann die Relativgeschwindigkeit v = Ax / At .

Wie misst der vorbeifliegende Rot die Lange dieser Strecke ? Er muss zuerst genauso wie Schwarz die Relativgeschwin-
digkeit der beiden Systeme bestimmen, indem er ebenfalls misst, wie lange es dauert, bis der Punkt A an einer Strecke
bekannter Léange auf seiner x'-Achse vorbeigeflogen ist. Schwarz und Rot sind sich (aus Symmetriegriinden) Gber den
Betrag der Relativgeschwindigkeit einig. Nun kann Rot die Linge der Strecke AB bestimmen indem er die Zeitdauer At’
misst, die zwischen der Begegnung mit A und derjenigen mit B verstreicht. Er rechnet sich dann aus Ax' = v - At'.
Damit gilt

Ax _Ax’
ac VT ar

Fiir die gemessenen Streckenldngen gilt daher mit dem Resultat (1.3) fir die Zeitdilatation

Ax' = Ax- |1- = (14.1)

Schwarz misst die Ruheldnge oder Eigenldnge der Strecke AB, sie ist immer die Langste.

Die sogenannte Ldngenkontraktion ist somit eine zwingende Folge der Zeitdilatation. Schnelle Uhren laufen langsamer,
und schnelle Strecken erscheinen kirzer. Mit Newtons Absoluter Zeit stirbt also auch sein Absoluter Raum !

Langenmessungen in y- oder z-Richtung sind von diesem Effekt nicht betroffen. Epstein argumentiert in seinem schénen
Buch "Relativitatstheorie anschaulich dargestellt" folgendermassen: Gdbe es so etwas wie eine Querkontraktion, dann
wirden die beiden Schienen aus der Sicht des Zuges bei hohen Geschwindigkeiten zusammenricken, die Spurweite
wirde zu eng. Aus der Sicht der Schienen wiirde aber der Abstand der Rader kleiner werden, die Spurweite ware zu
gross. Und da nicht beides gleichzeitig moglich ist gibt es keine Querkontraktion:

Ay = Ay und Az' = Az (14.2)

Zugehorige Abschnitte in EEE :

https://www.relativity.li/de/epstein/lesen/b0 _de/b3 de
https://www.relativity.li/de/epstein/lesen/b0_de/b4 de
https://www.relativity.li/de/epstein/lesen/b0_de/b5 de




15. Die Desynchronisation

Uhren, die in gegeneinander bewegten Inertialsystemen ruhen, laufen nicht gleich schnell und kénnen daher auch nicht
nachhaltig synchronisiert werden. Ruhende Uhren innerhalb eines Inertialsystemes kénnen sehr wohl permanent
synchronisiert werden. Dieser Prozess ist eigentlich eine Definition der Zeit innerhalb eines Inertialsystems. Mehr dazu
findet sich auf https://www.relativity.li/de/epstein/lesen/b0 _de/bl de.

Synchronisiert Schwarz seine Uhren im System S (t,x,y,z) und macht Rot dasselbe in seinem System S' (t',x',y',z'), so sind
fir beide die Uhren in ihrem eigenen System synchronisiert - aber jeder halt die Uhren des anderen in einem ganz
prazisen Sinn fir desynchronisiert !! Schwarz hilt die Uhren von Rot, die in ihrem System einen Eigenabstand Ax’ in der
x'-Richtung haben, nach der folgenden Formel fiir desynchronisiert:

! ! v
At = —Ax" - C_Z (151)
oder

v
At'-¢c = —Ax'- z (15.2)

Der Faktor c links in der zweiten Formel dient nur der Umrechnung von Zeiten in Ldngen. Die Desynchronisation ist
damit proportional dem Eigenabstand der Uhren in Bewegungsrichtung und dem Verhaltnis von v zu c . Das
Minuszeichen bedeutet, dass vorauseilende Uhren zeitlich im Riickstand sind (aus der Sicht von Schwarz !). Diese Uhren
sind ja auch dem Synchronisationsimpuls davongelaufen ...

Eine kurze Herleitung dieses Resultates finden Sie auf https://www.relativity.li/de/epstein/lesen/b0_de/b6_de .

Ohne dieses dritte Grundphanomen bei der Erfassung von zeitlichen und rdumlichen Messwerten erscheint die SRT
schnell widerspruchlich. Wie ist es moglich, dass fir jeden die Uhren des anderen langsamer laufen ? Fiihrt das nicht zur
Ungleichungskette At < At < At' ?? Viele populdre 'Widerlegungen' der SRT basieren auf diesem Kurzschluss.

Erst wenn man die Desynchronisation eines Satzes von schnellen Uhren hinzunimmt kann man alle Messungen in zwei
Bezugssystemen widerspruchsfrei zusammenfiigen, wie die Musteraufgabe im folgenden Abschnitt zeigt. Leider wird
dieser Punkt nur in wenigen Blichern zur SRT klar herausgearbeitet, meist wird das gar nicht erwahnt.



16. Eine Musteraufgabe zur Kinematik

Wie die drei Grundphdnomene Zeitdilatation, Langenkontraktion und Desynchronisation zusammenspielen sieht man
schén anhand der folgenden simplen Musteraufgabe.

Ein Teilchen bewege sich mit der Geschwindigkeit v = 0.8 - ¢ durch ein 12 m langes Rohr, welches an beiden Enden
mit Detektoren ausgeristet ist, sodass man die Durchflugzeit sehr genau messen kann. Schwarz sei das System in
welchem das Rohr ruht, Rot nennen wir das Ruhesystem des Teilchens. Es sollen die folgenden Fragen beantwortet
werden:

Wie lange dauert der Flug des Teilchens durch das Rohr fiir Schwarz ?

Wieviel Zeit verstreicht dabei im roten System nach der Ansicht von Schwarz ?

Welche Lange hat das Rohr fiir Rot ?

Wie lange dauert es fiir Rot, bis das Rohr Gber das Teilchen hinweggerast ist ?

Wieviel Zeit verstreicht aus der Sicht von Rot wahrend dieses Vorbeiflugs auf jeder Uhr von Schwarz ?
Wie erklart sich Rot den Messwert von Schwarz ?

ok wNeE

Die letzten beiden Fragen werden in den meisten Schulbiichern einfach weggelassen, dabei bilden sie den Schlussstein
im Bogen des Verstandnisses der SRT. Sie missen auch weggelassen werden wenn man die Desynchronisation nicht
behandelt ...

Dabei sind die Fragen alle schnell und leicht zu beantworten. Mit Vv bezeichnen wir den Term

2

v
1—C—2 =+1-0.82 = 0.6

1. Die Zeitdauer erhalten wir, wenn wir die Weglange durch die Geschwindigkeit dividieren:
At = Ax/v = 12m/(0.83-10° m/s) = 50 ns

2. Rot wird aus der Sicht von Schwarz wegen der Zeitdilatation eine kiirzere Dauer messen:
At' = At-V = 50ns-0.6 = 30ns

3. Rotssieht das schnelle Rohr Lorentz-verkiirzt: Ax' = Ax-V = 12m-0.6 = 7.2 m

4. Bis das 7.2 m lange Rohr Gber Rot hinweggeflogen ist verstreicht auf der Uhr von Rot die Zeit
At' = Ax'/v = 7.2m /(0.8:3-10° m/s) = 30 ns
Schwarz und Rot sind sich also einig Giber den Messwert von Rot !

5. Die schnellen Uhren von Schwarz ticken aus der Sicht von Rot verlangsamt, auf jeder der beiden schwarzen
Uhren vergeht aus der Sicht von Rot nur die Zeit At = At'-v = 30ns-0.6 = 18 ns !l

6. Rot kann sich trotzdem ausrechnen, dass Schwarz eine Zeitdauer von 50 ns misst. Die beiden Uhren von
Schwarz sind ja aus der Sicht von Rot desynchronisiert, und zwar um den Betrag
At = Ax - v/c2 =12m-0.8/ (3-108 m/s) = 32 ns.Zusammen mit den 18 ns, welche 'eigentlich' auf den
Uhren von Schwarz wahrend des Vorbeiflugs verstreichen (aus der Sicht von Rot), ergeben sich ebenfalls die
50 ns, die Schwarz tatsachlich misst. Vergewissern Sie sich, dass auch das Vorzeichen der Desynchronisation
von der Formel richtig bestimmt wird !

Schwarz braucht flr seine Messung zwei distante Uhren, deren Synchronisation kein objektiver Tatbestand ist. Rot und
Schwarz kénnen sich beide ausrechnen, welche Werte der andere messen wird, und diese Werte stimmen mit den
jeweiligen gemessenen Werten auch Uberein. Sie messen zwar beide unterschiedliche Zeitintervalle und Strecken-
langen, aber es ergeben sich daraus keine Widerspriiche. Die gemessenen Werte sind 'relativ', aber nicht beliebig.



17. Quergeschwindigkeiten und der transversale Dopplereffekt

Die Inertialsysteme von "Rot" und "Schwarz" sollen sich mit v respektive — v gegeneinander bewegen. Die Systeme
seien wie immer so ausgerichtet, dass ihre x-Achsen aufeinander liegen und die y-Achsen und z-Achsen parallel sind.

Im Bezugssystem S' (t',x,y',z') von Rot soll sich nun ein Objekt mit der Geschwindigkeit 1’ in der y'-Richtung bewegen.
Wie gross ist die y-Komponente u der Geschwindigkeit, die Schwarz in seinem System S (t,x,y,z) an diesem Objekt
misst ?

2

Esist u = Ay/At , u' = Ay'/At' . Nach (14.2) gilt Ay = Ay', und fiir Schwarz gilt zudem At = At - [1- =

Damit kénnen wir fir u schreiben

Ay Ay Ay

— — . = u- |[1-= 17.1
At At At u ( )

Schwarz sieht diese Quergeschwindigkeit verlangsamt um den bekannten Wurzelfaktor. Fiir Schwarz lauft im System
von Rot alles etwas retardiert ab. Mit dieser Bemerkung kommen wir nochmals auf den transversalen Dopplereffekt
zuriick:

Rot soll im Abstand Ax die x-Achse von Schwarz mit der Geschwindigkeit v in y-Richtung Gberqueren. Dabei dndert
sich der Abstand von Rot zu Schwarz gerade nicht. Trotzdem ist ein Oszillator von Rot aus der Sicht von Schwarz der
Zeitdilatation unterworfen. Wenn er in seinem System mit der Frequenz f’ sendet empfingt Schwarz die verminderte
Frequenz

(1.6) = (17.2)

Das ist nochmals die Formel fiir den sogenannten 'transversalen Dopplereffekt'. Dieser ist ein rein relativistisches
Phanomen, er hat keine Entsprechung in der 'klassischen' Physik. Aus der Sicht von Schwarz laufen eben im schnellen
System von Rot wirklich alle Vorgange etwas retardiert ab ...

... und fir Rot ist es natirlich genau umgekehrt !



18. Eine Herleitung des relativistischen Impulses ohne Verwendung der Erhaltungssatze

Im Abschnitt 4 haben wir die Formeln fiir die 'dynamische Masse' und den relativistischen Impuls aus dem Wunsch
abgeleitet, dass weiter Erhaltungssatze fir den Impuls und fir eine 'dynamische Masse' gelten sollen. Nun stellen wir
noch eine elegante Herleitung der Ausdriicke

fir diese Gréssen vor, welche keinen Gebrauch macht von diesen Erhaltungssatzen.

Die Darstellung ist identisch mit derjenigen auf https://www.relativity.li/de/epstein/lesen/e0_de/el de.
Zwei eineiige Zwillige (bei Epstein heissen sie Peter und Danny) sollen auf zwei Einstein-Ziigen aneinander vorbeifahren
und dabei einen vollig symmetrischen Faustschlag senkrecht zur Fahrtrichtung inszenieren:

lhre Relativgeschwindigkeit in der Fahrtrichtung des Zuges sei v , beide Fduste sollen dieselbe Ruhemasse m, haben
und beide sollen (in ihrem eigenen Bezugssystem) mit derselben Geschwindigkeit u quer zur Fahrtrichtung zuschlagen.
Aus Symmetriegriinden gilt somit fur die beiden Impulse

py(Peter) = —p,(Danny)

Peter sieht die Quergeschwindigkeit von Dannys Faust aber nach (17.1) verlangsamt und er wundert sich, dass Danny
trotzdem genau gleich hart zugeschlagen hat wie er selber. Das ist nur moéglich, wenn Danny mehr Masse in seiner
Faust versteckt hat | Wir missen also zulassen, dass die Masse eines Objekts von dessen Relativgeschwindigkeit
abhangig sein kann. Peter stellt daher mit (17.1) fir die Impulse in der y-Richtung die folgende Gleichung auf:

My U = —Myyy U = —Mypy, - (—U) -

Dabei soll hier fiir den Moment im tiefgestellten Index der Ausdruck v + u’ fiir den Betrag der vektoriellen Summe der
beiden Geschwindigkeitskomponenten stehen. Wir dividieren durch uw und erhalten

Diese Gleichung gilt flir beliebig kleine Quergeschwindigkeiten u . Sie gilt somit auch im Grenzfall u — 0. Dann ist
auch u' =0, m, wird zumg, my,,, wirdzum, und wir erhalten die Gleichungen (4.1) und (4.2) :

m
mv — —0 = y.mo und p = m‘lllv = 'y.mo -V (181)

172
J1-=



19. Aus der Impulserhaltung folgt die Erhaltung der 'dynamischen Masse'

Im Abschnitt 18 haben wir die Formeln (4.1) und (4.2) fiir die dynamische Masse und den relativistischen Impuls
hergeleitet ohne die Erhaltungssatze fiir Masse und Energie vorauszusetzen. Jetzt zeigen wir noch, dass aus dem
Impulserhaltungssatz folgt, dass ein Massen-Erhaltungssatz nur fir die 'dynamische Masse' gelten kann. Die Darstellung
ist dem schonen Buch "The Wonderful World of Relativity" von Andrew M. Steane (Oxford University Press 2011)
entnommen. Das gilt auch fir die folgende Figur:

(a) (b)

Before Before i
'@ "

After After

m iy m
.] .“ w) m, 2 Wy
A Vs

Die linke Bildhélfte (a) zeigt eine ruhende Masse M, welche in zwei Stiicke mit den Ruhemassen m; und m, zerplatzt.
Diese fliegen wegen der Impulserhaltung mit den Geschwindigkeiten v; und v, in entgegengesetzte Richtungen
auseinander. Die rechte Bildhélfte (b) zeigt denselben Vorgang in einem Bezugssystem welches sich relativ zum
vorangehenden mit der Geschwindigkeit u nach unten bewegt. Die vertikale Komponente der Impulserhaltung liefert
die Gleichung

M-u-y, =mg-u-y, +my-uy,,
Nach der Division durch u haben wir noch
M-y, = my vy, + My Yy,
Diese Gleichung gilt flir beliebig kleine Werte der Geschwindigkeit u . Der Grenzwert fir u gegen null liefert
M =m -y, +my-y, (19.1)

Das ist die Erhaltung der 'dynamischen Masse' bei diesen Vorgang | Die Ruhemasse bleibt nicht erhalten, die
Werte von y,, und y,, sind ja als Kehrwerte des Wurzelausdrucks grésserals1;esist M > m; + m, .

Nun schreiben wir (immer noch mit Andrew M. Steane) die Gleichung (19.1) noch ein bisschen um:
M=m +my (Yp,—1) + my + my-(y,, — 1) (19.2)

Man sieht schdn wie sich rechts, nach der Spaltung, die gesamte dynamische Masse aus den beiden Ruhemassen und je
einer kleinen zusatzlichen Masse zusammensetzt. Multiplizieren wir die ganze Gleichung mit ¢? entsteht aus dem
Erhaltungssatz der dynamischen Massen der Erhaltungssatz der Gesamtenergie:

M-c* =my-c2+my-c® (y,,—1) + my-c* + my-c*-(y,, — 1) (19.3)
Die Gesamtenergie setzt sich rechts zusammen aus den beiden Ruheenergien und den beiden kinetischen Energien.
Akzeptiert man die Existenz einer Ruheenergie haben wir hier eine weitere Herleitung des technischen Terms fiir die

kinetische Energie aus dem Impulserhaltungssatz.

Diese Herleitung wird in der zeitlichen Umkehr als vollkommen inelastischer Stoss schon 1920 von Max Born in seinem
Buch "Die Relativitatstheorie Einsteins" vorgestellt (neu aufgelegt im Springer Verlag ab 1964).



20. Die Lorentz-Transformationen

Die Inertialsysteme von "Rot" und "Schwarz" sollen sich mit v respektive — v gegeneinander bewegen. Die Systeme
seien wie immer so ausgerichtet, dass ihre x-Achsen aufeinander liegen und die y-Achsen und z-Achsen parallel sind.
Schwarz ordne in seinem Bezugssystem S Ereignissen die Koordinaten (t,x,y,z) zu, Rot bestimme fir dieselben

Ereignisse in seinem Bezugssystem S' die Koordinaten (t',x’,y"z') . Wie lassen sich die Koordinaten desselben
Ereignisses von einem System ins andere umrechnen ?

Weil es nach (14.2) keine Querkontraktion gibt, gilt in unserer Konfiguration
y=y und z =12 (20.1)

Fiir die Umrechnung der Zeitkoordinaten und der x-Koordinaten nehmen wir zusatzlich an, dass Rot und Schwarz bei
der Begegnung ihrer Nullpunkte auf der x-Achse ihre dortigen Uhren auf null gestellt haben und anschliessend alle
Uhren in ihrem jeweiligen Bezugssystem mit der 'Mutteruhr' im Nullpunkt synchronisiert haben. Es konnen ja nur die
Messwerte von Zeitintervallen und Ortsintervallen (also Streckenlangen) verglichen werden, es muss also zuerst ein
gemeinsames Referenzereignis vorliegen. Spateren Ereignissen wird dann der zeitliche und der rdumliche Abstand zu
diesem Referenzereignis oder Nullpunkt-Ereignis zugeordnet.

Rot messe nun die Koordinaten (t', x") zu einem bestimmten Ereignis. Die rote Uhr am Ort x' ist aber fiir Schwarz nach
(14.1) gegenuber der Nullpunktsuhr von Rot desynchronisiert, diese zeigt dann schon die Zeit

t+

c?

an. Weil auch die Nullpunktsuhr wie alle Uhren von Rot um den Wurzelterm langsamer geht als die Uhren von Schwarz
berechnet sich Schwarz seinen Uhrenstand bei diesem Ereigniss zu

¢+ X 2v
t = —cz (20.2)
v
1-=

Welchen Abstand x ordnet Schwarz diesem Ereignis zu ? Der Nullpunkt von Rot bewegt sich nach der Formel
O,,: = V- t . Schwarz sagt dass Rot den Abstand x’ des Ereignisses vom eigenen Nullpunkt nach (14.1) lorentz-
verkirzt sieht. Daher notiert sich Schwarz

X

vz v? v2 v?
\/1'?2 \/1'72 \/1'?2 1-=

Die rdumlichen und zeitlichen Koordinaten lassen sich nicht mehr separieren.

Die Situation von Schwarz und Rot ist vollig symmetrisch, fiir die umgekehrte Umrechnung ist nur das Vorzeichen der
Relativgeschwindigkeit v zu wechseln. Diesem Satz von Koordinatentransformationen hat Henri Poincaré zu Recht den
Namen 'Lorentz-Transformationen' gegeben. Hendrik Antoon Lorentz hat sie kurz vor 1900 als Kunstgriff eingefiihrt um
den Konflikt zwischen der konstanten Lichtgeschwindigkeit und dem Ather rechnerisch zu beheben. Poincaré hat auch
gezeigt, dass diese Transformationen eine Gruppe bilden im Sinne der Gruppentheorie.



Wir stellen die Transformationen in beide Richtungen noch zusammen:

,  xv xX-v

t t — ——

¢ = Tz ¢ = c?

2 v2

l_ﬁ 1_F

x +v-t , x —v-t

r= 2 r = 2

v v

1- 5 1- 5

y =y y =y

z=17 z' =1z (20.4)

Wir werden diese Transformationen brauchen um Differentiale zu berechnen wie etwa dx’' / dt oder dt / dt'.

Newtons absolute Zeit verlangt t = t’, zusammen mit seinem absoluten Raum folgen noch x = x'+ v -t und
x'=x — v -t .Dassind die bekannten Galilei-Transformationen. Sie folgen aus den Lorentz-Transformationen wenn
man den Limes fir ¢ — oo bildet. Allein schon die Existenz einer Grenzgeschwindigkeit ist nicht kompatibel mit
Newtons Vorstellungen von Zeit und Raum, sie erzwingt die Aussagen der speziellen Relativitatstheorie !

Wir schreiben diese Lorentz-Transformationen auch noch unter Verwendung der Terme £, und y,, wie siein (6.2)
und (6.3) definiert worden sind:

x' x
t=n-<t’+ﬂv-?> t’=y,,-(t—[},,-z)
x =y, (X' + By-c-t') x' =y, (x = By-c-t)
y=v y =y
z=17 7 =z (20.5)

Multipliziert man die oberen Gleichungen fiir t und t’ mit ¢ erhalten die Gleichungen fiir die Variablen ¢ -t und ¢ -t
dieselbe Gestalt wie diejenigen fiir die Variablen x und x’ . Dasselbe wird auch erreicht, wenn man durch die Wahl von
anderen Einheiten fiir die Zeit- oder die Langenmessung dafir sorgt, dass der Wert der Lichtgeschwindigkeit 1 wird.

Die gesamte Symmetriegruppe der SRT entsteht, wenn man zu diesen Lorentz-Transformationen noch die Rotationen
des Raumes hinzunimmt. Diese umfassendere Gruppe nennt man manchmal die Poincaré-Gruppe. Poincaré hat auch
gezeigt, dass diese Gruppe gerade die Symmetriegruppe der Maxwell'schen Theorie darstellt.

Die Lorentz-Transformationen behandeln ja nur den Fall von Bezugssystemen, die speziell zueinander ausgerichtet sind
(die x-Achse und die x'-Achse liegen aufeinander und sind parallel zur Relativgeschwindigkeit, zudem sind auch die
beiden y-Achsen und z-Achsen parallel). Im angelsdchsischen Raum spricht man in diesem Spezialfall auch von einem
'Lorentz boost'. Bei der Wahl des Koordinatensystems ist man aber frei, und warum soll man es sich dabei freiwillig
schwer machen ?



21. Die Transformation von beliebigen Geschwindigkeiten

Mithilfe der Lorentz-Transformationen leiten wir nun die Formeln fir die 'Addition' beliebiger Geschwindigkeiten her.
Die Inertialsysteme seien wieder wie im letzten Abschnitt festgelegt. Rot bewegt sich mit v entlang der x-Achse von
Schwarz. Im System von Rot bewege sich ein Objekt mit der Geschwindigkeit u’ in eine beliebige Richtung. Welche
Geschwindigkeit u hat dieses Objekt im System von Schwarz ?

Esist

, ., dx' dy' dz' dx dy dz
v=(v,0,0) , u = (u,,u, ,u') = 90 ar ' ar und  u = (Uy,Uy, U, ) = (E'E'E)

Wir berechnen die einzelnen Komponenten von u . Die Ableitungen gewinnen wir aus den Formeln (20.5) des letzten
Abschnitts :

X (2 . .d_t'> , LV
u—d_"_ﬂ.d_t'_ﬁ_y<dt'+ﬁcdt' _w el w4 (21.1)
* T odt  dt’ dt  dt dt’ 1 dx'\ vi1 ., v-u, '

at’ y'<ﬁ+ﬂ'?dt’> I oo 1+—7

Wir haben damit die Formel (2.1) flr die 'Addition' paralleler Geschwindigkeiten nochmals hergeleitet.

Ganz dhnlich bestimmen wir u,, und u, :

! d—y dy, ! !
w2 W _ &y At ar dt’ - Yy = Yy (21.2)
Y dt dt' dt dt dt’ 1 dx' v 1 v-ou, :
@ (e vriew) v (1e75)
ul
und genauso U, = .o on = —Zvu’ (21.3)
y (1+ c2x>

Will man 4’ aus v und u berechnen kann man dieselben Formeln verwenden, man muss nur tiberall v durch
— v ersetzen.

Nun nehmen wir zusatzlich an, dass die z-Komponente von u’ ( und damit auch die z-Komponente von u ) null sei.
Das ist keine Einschrankung der Allgemeinheit, durch Rotation der Systeme S und S' um die x-Achse lasst sich immer
erreichen dass die x-y-Ebene mit der Ebene zusammenfillt, welche durch v und u' aufgespannt wird.

a' soll den Zwischenwinkel von u’ und v bezeichnen. Mit u,’ = 0 gilt

’
l uy
tan(a’) = w (21.4)

X

Welchen Winkel a bilden dann u und v ?



Wir berechnen tan(a) mit (21.1) und (21.2) :

Uy
V-, , V2
u, 7Y <1+ c2x> uy' - J1- =2 u,’
tan(a) = — = ; = n = - (21.5)
Uy u, + v U, + v y - (u, + v)
vV,
(1+%%=)
Aus
!
2 _ 2 2 2 _ "2 N2 N _ Yy
u’ = (u,) +(uy) , u? = (u,) +(uy) und tan(a’) = o
X
erhalt Einstein "nach einfacher Rechnung"
v-u'-sina’\’
w2 +u? +2-v-u'-cosa’) — (f)
u = ; ; (21.6)
140U cosa

c?

Er schreibt dazu: "Es ist bemerkenswert, dass v und u’' in symmetrischer Weise in den Ausdruck fiir die resultierende

Geschwindigkeit eingehen. Hat auch u’ die Richtung der x-Achse so erhalten wir ..." ... wieder die Formel (2.1). Dann ist
ja cos(a) =1 und sin(a") =0.

Einsteins "einfache Rechnung" ist tatsdchlich mit den Formeln (21.1) und (21.2) gut durchfiihrbar.

Jetzt kdnnen wir auch die Formel (17.1) noch ein bisschen 'gelehrter' herleiten. Fiir eine reine Quergeschwindigkeit
u' = (0,uy,,0)giltnach (21.2)

(17.1) = (21.7)




22. Die Aberration des Lichts

Die Rechnungen des letzten Abschnittes gelten fiir beliebige Geschwindigkeiten u und u’, somit auch fir das Licht
welches von einem weit entfernten Stern bei Schwarz unter dem Winkel a zur x-Achse eintrifft. Wir zerlegen die
Lichtgeschwindigkeit in ihre Komponenten

Uy = —c-cosa , u, =c-sina und u, =0

a ist also nach unserer Wahl ein spitzer Winkel fiir Lichtquellen mit positiver x-Koordinate. Geméss den Formeln (21.1)
und (21.2) hat die Geschwindigkeit dieser Lichtteilchen fir Rot, welcher dem Licht entgegeneilt, die Komponenten

, —c-cosa — v —c-cosa — v

Uy = 1+—v-(—2-cosa= 1+v-ccosa

, c-sina c-sina
v y (1T Ceosa) T (14 RS

Eine kleine Kontrollrechnung zeigt dass immer noch gilt (u,")* + (u,")* = .

Fiir Rot trifft das Licht von diesem Stern unter einem spitzen Winkel a’ zur x-Achse ein fiir den gilt

c-sina
U Ccos @
Lo Y’(1 +T) sina sina
tana’ = 7T T c-cosa v - vy~ (cosa + B) (22.1)
U . v . .
x —cosa~ y (cosa + c) 14
(1+=25)

Einstein hat in seiner Originalpublikation eine andere Formel bevorzugt, die wir auch leicht herleiten kénnen:

v
—u,’ cosa + — cosa +
cosa = T = — £ = B (22.2)
c 14 22c05a 1+ B-cosa
c

Einstein schreibt dazu: "Diese Gleichung driickt das Aberrationsgesetz in seiner allgemeinsten Form aus." Die
Vorzeichen sind bei ihm allerdings anders, da er nicht unseren Winkel a sondern ¢ = 180° — a¢ verwendet. Fir den
Spezialfall von @ = 90° erhilt man aus (21.2) cos <’ = B = v/c . Fir die Abweichung &' vom 90°-Winkel gilt also
sin§ =cosa' = v/c.

Bis 1905 hat man, der 'alten' Addition von Geschwindigkeiten folgend, mit dem 'falschen' Ausdruck tan 8§’ = v/c
gerechnet. Der Unterschied ist bei diesen kleinen Winkeln allerdings verschwindend.

Fiir die Beziehung zwischen a und a’ kénnen wir noch eine schéne symmetrische Variante ableiten. Es gilt ja fiir alle

Winkel

; a sina
an — = ———
2 1+4+cosa

Mit (21.1) und (21.2) erhalten wir damit

u.,’ sina

tana’ _ sina” Ty _ y-(A+B-cosa) _ sina B
2  1+4cosa’ 1_u_x' 14 cosa + B y-(I+pf-cosa+cosa + B)
c 1+ -cosa



sina B 1 sina  J1-p2 a

-tan — =

y-(1+B)-(1+cosa) _y-(1+,8)'1+cosa ) 2
J1- J1+ J1- a c—v a
B p tan— ﬁ-tan— = -tan —
1+B-{J1+p 1+ 8 2 ctv 2
Wir halten fest:
a' 1-p8 a c—v a
b ol Z_ . b (22.3)
tan2 176 tan2 Py tan2

Astronom "Rot", der dem Stern mit der Geschwindigkeit v entgegeneilt, sieht diesen unter dem kleineren Winkel o'
zur Richtung seiner x'-Achse als es Schwarz tut, der relativ zum Stern ruht oder sich diesem weniger schnell ndhert.

'aberrare' heisst abirren, abweichen. Diesen Effekt hat James Bradley 1727 angeblich bei einer Kutschenfahrt im
englischen Regen entdeckt. Er beobachtete, dass der Regen immer mehr von vorne zu kommen schien je schneller die
Kutsche fuhr, und er realisierte, dass sich dieser Effekt bei einer endlichen Lichtgeschwindigkeit auch beim Licht
bemerkbar machen misste.

Mit der Geschwindigkeit der Erde auf ihrer Umlaufbahn um die Sonne ( etwa 30 km/s ) macht das bei einem Stern der
querab zur Bahnrichtung liegt ( @ = 90° ) etwa 20 Bogensekunden aus :

c—v 90" [300000030
crv 277 3000000 + 30

f_y. Y, t 3007000 — 30 89° 59’ 39.4"
@ TLry T eraretany 1300000 +30) :

Die folgende Abbildung ist (mit Anpassungen an dieses Skriptum) dem Buch "Spezielle Relativitdtstheorie fir
Studienanfanger" von Jirgen Freund entnommen ( vdf Hochschulverlag Zirich 2004 ). Sie zeigt wie eine im System S
isotrope Strahlung einen schnellen Beobachter im System S' konzentriert von vorne erreicht, genau wie die Regen-
tropfen es bei einem schnellen Fussganger machen:

S s’
0
v

Die Graphik ist fir v = 0.9 - ¢ gerechnet. Die Strahlung kommt flir den schnellen Rot nicht nur konzentriert von vorne,
sie hat dort wegen dem Doppler-Effekt auch eine erhéhte Frequenz. Aus sichtbarem Licht kdnnte bei sehr grossen
Geschwindigkeiten eine gefdhrliche UV- oder Rontgenstrahlung werden. Und 'hinten' wird es dunkel ...

tan — =

Die Spezialfélle dieser Frequenzverschiebungen, den longitudinalen und den transversalen Dopplereffekt, haben wir
bereits behandelt. Den allgemeinen Fall studieren wir der Vollstéandigkeit halber noch im nachsten Abschnitt.



23. Die allgemeine Dopplerformel

Ein Sender S bewege sich gemass Skizze im Koordinatensystem des ruhenden Empfangers E mit der Geschwindigkeit v .
Er sende (in seinem System) mit der Frequenz f5 .

2N
Vead | <
szg” an
- >

Zwei Effekte sorgen dafir, dass der Empfanger das Signal bei einer (hier verminderten) Frequenz fr empfangt:

a) Die Zeitdilatation bewirkt, dass der Oszillator des Senders aus der Sicht des Empfangers um den
Wurzelausdruck verlangsamt schwingt. Dieser Effekt ist unabhéngig von der Richtung der Relativ-
geschwindigkeit.

b) Die zunehmende Entfernung hat (aus der Sicht des Empféangers) eine Streckung der Wellenlange zur
Folge gemdss dem longitudinalen Dopplereffekt. Fir diesen Anteil ist nur die Radialgeschwindigkeit
Vyrad = V- COS @ verantwortlich.

Wir kdnnen somit fir den Dopplereffekt im vorliegenden allgemeinen Fall dieselbe Rechnung wie bei (1.4) verwenden,
wir brauchen nur am richtigen Ort fir v die Radialgeschwindigkeit v,.,4 einzusetzen:

B c B c 1 172_ 1 " 2
fe=Fs Ct Uray r(v) = fs ctv-cose 2 =fs 14 2C059 c?
c
Also
B \J €% - p? B 1
fe = 1Js c+v-cosp Is Y-(1+B-cose) (23.1)

Andere Autoren verwenden den Winkel 8 = 180° — ¢ und haben entsprechend ein Minuszeichen im Nenner.
Noch eine kleine Kontrolle:

e ImFallvon ¢ = 0 entferntsich der Sender direkt vom Empfanger entlang der Verbindungsstrecke ES. Dann
ist Vyqa = vV und cos ¢ = 1 und wir sind im Spezialfall des longitudinalen Dopplereffekts nach (1.4).

e ImFallvon ¢ = 90° bewegt sich der Sender quer zur Sichtlinie zum Empfanger. Dannist v, = 0 und
cos ¢ = 0 und wir erhalten die Formeln (1.6) oder (17.2) des transversalen Dopplereffekts.



24. Vierervektoren, Dreiervektoren und Newtons zweites Gesetz

Ein sehr leistungsvolles Werkzeug beim Losen von Aufgaben in der SRT sind Vierervektoren. Die zeitliche und die drei
rdumlichen Koordinaten eines Ereignisses werden zu einem Vektor mit vier Komponenten zusammengefasst:

X =(c-ttx,y,z)= (c-t, ¥)

Die Zeitkomponente wird mit ¢ multipliziert damit alle 4 Komponenten dieselben Einheiten haben. X ist der Viererort
eines Ereignisses in der 4d-Raumzeit. Die Vierergeschwindigkeit gewinnt man daraus aber nicht durch Ableitung nach
der Zeit t , da die Zeit ja verschieden schnell |duft in verschiedenen Bezugssystemen. Man leitet nach der Eigenzeit t©
ab, der Zeit im aktuellen Ruhesystem des schnellen Objekts. Fiir die Vierergeschwindigkeit V erhalt man dabei

N N N SO .
=57 &) =& =y @) =y-(c, V)

Multipliziert man die Vierergeschwindigkeit mit der Ruhemasse m, , so erhadlt man den Viererimpuls

_ _ - _ Etot -
P=my-V=y-my-(c, v)= p , D (24.1)
Dabei haben wir (4.2) und (5.4) beniitzt. Fiir den Impuls p ist hier also die relativistisch korrigierte Variante
einzusetzen !
Weiter wird die Viererkraft F definiert durch
P d P) = d P) dt_ d ) = 1 dE,,; dp _ 1 L 2 (24.2)
=P =P gEr W = g g = v (v ) '

wo f far den traditionellen oder bisherigen 3d-Kraftvektor steht.

Wir arbeiten hier nicht mit Vierervektoren, wir méchten nur untersuchen, welche Beziehungen zwischen 3d-Vektoren

in der SRT weiterhin glltig bleiben. Der rdumliche Teil von (24.2) zeigt, dass in der SRT das zweite Axiom von Newtons

Mechanik fiir die 'Dreiervektoren' scheinbar unverandert giiltig bleibt :
- d_)
F=2 (24.3)

dt
Die Anpassung an die SRT versteckt sich in der neuen Definition des Impulses. (24.3) braucht nicht bewiesen
zu werden, das ist die Definition der Kraft f , genauso wie sie das schon friiher bei Newton war.

Die Gleichung fir die Leistung gilt weiterhin ohne jede Anpassung, wie man der zeitlichen Komponente von
(24.2) entnehmen kann :

dE_—»_)_adJ_C) d dE = 7.di (24.4)
dt—fv—fdt oder = f-dx .

Die rechte Seite von (24.4) ist ja nichts anderes als die Definition der Energie als gespeicherte Arbeit.

Im Abschnitt 5 haben wir (24.3) und (24.4) zur Berechnung der kinetischen Energie bereits eingesetzt:

-

. dp  dv dp
dE = 7% -dt =L .5 .a =L P 3. av (24.5)

dt VM T

Das Resultat dieser Rechnung, also (5.2), hat im Abschnitt 19 eine unabhéngige Bestatigung gefunden.



Gehen wir noch einen Schritt weiter: Die Viererbeschleunigung A ist definiert durch
A= d V)
T odt
Aufgund dieser Definition ist die Beziehung F = m, - A in der SRT universell gultig! Es ist ja

d d
F = — P = — . = . — = ‘A
dr (P) dr (my - V) my dr ) my

Die Darstellung der Viererbeschleunigung A durch Dreiervektoren ist ein bisschen kompliziert. Die Rechnung zeigt, dass
gilt

d - o - -
A=E(V)= y*-c?-v-a-(c, v) + y*-(0, a) (24.6)

Aus F = mg - A erhalten wir mit (24.2) und (24.6)

1 - -
V(B ) = me yt e Bed (e, B) + mgy?e (0, @) (247)

In der SRT braucht die Dreierkraft f also nicht mehr parallel zu sein zur Dreierbeschleunigung d !

Der komplizierte erste Summand auf der rechten Seite von (24.6) und (24.7) verschwindet wenn der Beschleunigungs-
vektor senkrecht steht auf dem Vektor der Geschwindigkeit, wie es zum Beispiel bei der Lorentz-Kraft immer der Fall ist.
Dann reduziert sich (24.7) zu

1 N - N
v(of v f)= my-y*-(0, a)

und wir haben f = y - my - d.Um 1905 hat man in dieser Situation noch von der 'transversalen Masse' y - m,
gesprochen.

Sind ¥ und d parallel zueinander, erhilt man aus (24.2) und (5.1) direkt

> dp _dp dv _dp dv
f_dt_dv dt ~ dv dt

3 -
=Y Me-a

Man kann diesen Zusammenhang natiirlich auch aus (24.7) ableiten. Die Grésse y3 - m, hat man um 1905 mit
'longitudinaler Masse' bezeichnet.

In modernen Publikationen zur SRT wird mit der Masse eines Objekts ausschliesslich seine Ruhemasse m, bezeichnet.
Ich erlaube mir aber weiterhin von der 'dynamischen Masse' y - mg zu sprechen, weil diese immerhin eine
Erhaltungsgrésse ist. Sie ist auch proportional zur Gesamtenergie und damit zur Tragheit des betrachteten Objekts. Die
Ruhemasse m, hingegen ist eine Invariante, sie hat in allen Bezugssystemen denselben Wert. Sie ist aber keine
Erhaltungsgrosse.

Die Begriffe 'transversale Masse' und 'longitudinale Masse' werden seit Giber 100 Jahren nicht mehr bendtzt.

Eine recht ausfiihrliche Einflihrung in das Rechnen mit Vierervektoren bietet die folgende Publikation des Autors dieses
'Schnellen Pfades' : https://www.physastromath.ch/uploads/myPdfs/Relativ/SRT mit Vierervektoren.pdf




25. Zur Axiomatik der Speziellen Relativitatstheorie

Die Notwendigkeit der SRT ergab sich aus den Bemihungen, das allgemeine Relativitatsprinzip mit Maxwells Theorie
vom Elektromagnetismus zu verséhnen. In Maxwells Theorie breiten sich elektromagnetische Wellen im Vakuum
unabhéangig von der Geschwindigkeit des Senders in jedem Inertialsystem mit derselben konstanten Geschwindigkeit
aus. Dies ist mit Newtons Mechanik und seinen Vorstellungen einer Absoluten Zeit und eines Absoluten Raumes nicht
vereinbar. Lorentz hat versucht mit einer Ldngenkontraktion und der zusatzlichen Annahme einer Lokalzeit Maxwells
Theorie mit der Newton'schen Mechanik zu verbinden. Er hat dabei bis 1900 schon einen grossen Teil der Mathematik
der zuklnftigen SRT entwickelt.

Im Denken der "Athertheorie" der Lichtausbreitung war die Konstanz von ¢ ein Problem. Einstein macht aus dem
Problem (in Kenntnis der aktuellen experimentellen Ergebnisse) ein Prinzip oder ein Axiom und baut darauf eine neue
Theorie auf | Im Friihling 1905 hat Einstein erkannt, dass der Kern des Problems bei Newtons Absoluter Zeit liegt. Seine
Analyse der Gleichzeitigkeit von Ereignissen flihrte zum Verstdandnis der drei Grundphdnomene Zeitdilatation,
Ldngenkontraktion und Desynchronisation und der Formulierung der Speziellen Relativitatstheorie. Genauso hat er es
spater bei der Allgemeinen Relativititstheorie gemacht: Das Problem war dort die Aquivalenz von triger und schwerer
Masse, ber die sich schon Newton gewundert hat. Einstein erhebt das Problem zu einem Axiom und leitet daraus (auf
einem langen und beschwerlichen Weg) die Allgemeine Relativitatstheorie ab.

Die SRT basiert also auf dem Axiom

Al Die Vakuums-Lichtgeschwindigkeit ist eine universelle Naturkonstante. Sie ist unabhdngig vom Bewegungs-
zustand der Lichtquelle oder des Beobachters.

Von den 4 Erhaltungssatzen der klassischen Physik ( Masse, Energie, Impuls, elektrische Ladung ) bleibt bei der
Entwicklung der SRT nur einer unberihrt, namlich der Erhaltungssatz fir die elektrische Ladung. Die Erhaltungssatze fir
Masse und Energie verschmelzen zu einem einzigen Erhaltungssatz, der wahlweise flr die dynamische Masse oder die
Gesamtenergie formuliert werden kann, wobei bei den Energien auch die Ruheenergie der beteiligten Kérper
bericksichtigt werden muss. Auch der Erhaltungssatz fir den Gesamtimpuls bleibt nicht ganz verschont, indem der
Impulsbegriff selber eine Korrektur erfahrt.

Der Abschnitt 18 zeigt, dass die Definitionen der 'dynamischen Masse' und des 'SRT Impulses' zwingend aus der Zeit-
dilatation folgen und keinen Erhaltungssatz voraussetzen.

Der Abschnitt 19 zeigt, dass die Erhaltung der 'dynamischen Masse' eine Folge der Impulserhaltung ist.

Und im Abschnitt 4 wird gezeigt, dass die Definitionen der 'dynamischen Masse' und des 'STR Impulses' allein schon
daraus folgen, dass man annimmt, dass eine Geschwindigkeitsabhangigkeit der Masse existiert, welche mit den
Erhaltungssatzen fir Masse und Impuls kompatibel ist.

Bemerkenswert ist noch, dass alle drei Gesetze von Newton giiltig bleiben ! Das erste brauchen wir nicht zu beachten,
es ist ja nur ein Spezialfall des zweiten. Das zweite Gesetz lautet in Newtons urspriinglicher Formulierung F = dp/dt .
Das gilt in der SRT weiterhin, allerdings mit einer etwas 'nachjustierten’ Definition des Impulses. Und Newtons drittes
Gesetz ( 'actio = reactio' ) ist als tiefe Erkenntnis sowieso erhaben liber die Spitzfindigkeiten jeder speziellen Theorie.

Setzt man die Gleichung E = p - ¢ fir eine Portion an elektromagnetischer Strahlung voraus, kann man aus dem
Impulserhaltungssatz (Abschnitte 10 bis 12) oder dem Energieerhaltungssatz (Abschnitt 13) die Aquivalenz von Masse
und Energie ableiten und die ganze SRT darauf aufbauen. Dann kann man das Axiom A1 leicht abschwachen, es geniigt
zu verlangen, dass die Lichtgeschwindigkeit an ruhenden Quellen gemessen in allen Bezugssystemen dieselbe sei.

A1l ist also dquivalent zu A2 & A3, wenn diese etwa so lauten:

A2 Die Vakuums-Lichtgeschwindigkeit an einer ruhenden Quelle gemessen ist eine universelle Naturkonstante.

A3 Energie und Impuls von elektromagnetischer Strahlung sind durch die Gleichung E = p - ¢ gekoppelt.



